See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282331419

Generalizations of Prime Subsemimodules

Article in Southeast Asian Bulletin of Mathematics • January 2015

CTTATION	READS
1	135

1 author:

Manish Kant Dubey
Defence Research and Development Organisation 27 publications 45 Citations

SEE PROFILE

Generalizations of Prime Subsemimodules

Manish Kant Dubey
SAG, Metcalf House, DRDO Complex, Delhi 110054, India
Email: kantmanish@yahoo.com
Poonam Sarohe
Department of Mathematics, Lakshmibai College, University of Delhi, Delhi 110052, India
Email: poonamsarohe@gmail.com

Received 10 July 2013
Accepted 19 May 2014
Communicated by Yuqun Chen

AMS Mathematics Subject Classification(2000): 16Y60

Abstract

Let S be a commutative semiring with unity and M be an unitary left S semimodule. Let $\phi: T(M) \rightarrow T(M) \cup\{\emptyset\}$ be a function, where $T(M)$ is the set of all subsemimodules of M. A proper subsemimodule N of M is called a ϕ-prime subsemimodule of M if $s \in S, x \in M, s x \in N \backslash \phi(N)$, then either $s \in(N: M)$ or $x \in N$. In this paper, we study the concept of ϕ-prime subsemimodule which is a generalization of ϕ-prime ideal in a commutative ring and give some characterizations in terms of M-subtractive subsemimodules.

Keywords: Semiring; Semimodule; ϕ-prime subsemimodule; M-subtractive subsemimodule.

1. Introduction

D.D. Anderson and E. Smith in [2], have first introduced the concept of a weakly prime ideal in a commutative ring with unity for the study of factorizations in a commutative ring with zero divisors. S.M. Bhatwadekar and P.K. Sharma in [10], have extended the concept in terms of almost prime ideals in commutative ring with non zero identity. Further, D.D. Anderson and M. Bataineh in [1] have generalized this concept and define the notion of ϕ-prime ideals in
commutative ring. Recently, N. Zamani in [16], has introduced the notion of ϕ-prime submodule and prove analogous of some of the properties of ϕ-prime ideals of commutative ring for ϕ-prime submodules. Recent work on the topics of semimodules have been considered and studied in [8], [9], [3], [6], [7], [10] and [13].

In this paper, we have extended the results of prime ideals of commutative ring to prime subsemimodules of semimodules. By a commutative semiring we mean a commutative semigroup (S, \cdot) and a commutative monoid $\left(S,+, 0_{s}\right)$ in which 0_{s} is the additive identity and $0_{s} \cdot x=x \cdot 0_{s}=0_{s}$ for all $x \in S$, both are connected by the ring like distributivity. A non-empty subset I of a semiring S is called an ideal of S if $a, b \in I$ and $s \in S$, then $a+b \in I$ and $s a$, as $\in I$. An ideal I of a semiring S is called subtractive if $a, a+b \in I, b \in S$ then $b \in I$. A prime ideal P of a semiring S is an ideal with the property that for $a, b \in S$, $a b \in P$ implies $a \in P$ or $b \in P$. A proper ideal P of a commutative semiring is called weakly prime if $0 \neq a b \in P$ implies $a \in P$ or $b \in P$. A prime ideal is always a weakly prime ideal of a semiring S but converse needs not be true.

Let S be a semiring. A left S-semimodule M is a commutative monoid ($M,+$) which have a zero element 0_{M}, together with an operation $S \times M \rightarrow M$, denoted by $(a, x) \rightarrow a x$ such that for all $a, b \in S$ and $x, y \in M$,
(1) $a(x+y)=a x+a y$,
(2) $(a+b) x=a x+b x$,
(3) $(a b) x=a(b x)$,
(4) $0_{s} \cdot x=0_{M}=a \cdot 0_{M}$.

A non-empty subset N of a left S-semimodule M is called subtractive if $a, a+b \in N, b \in M$ then $b \in N$.

A left S-semimodule M is called cyclic if M can be generated by a single element, that is, $M=\langle m\rangle=S m=\{s m: s \in S\}$ for some m in M. A left S-semimodule M is called cancellative if whenever $r x=s x$ for elements $r, s \in S$ and $x \in M$ then $r=s$. Let M be a left S-semimodule. An equivalence relation ρ of M is said to be a congruence relation if $(a, b) \in \rho$ implies $(a+c, b+c) \in \rho$ for all $c \in M$ and $(r a, r b) \in \rho$ for all $r \in S$. Let N be a subsemimodule of M. The Bourne relation (Latorre 1965) ρ on M is defined as

$$
\rho=\{(x, y) \in M \times M: x+i=y+j \text { for some } i, j \in N\} .
$$

Then ρ is a congruence relation on M. Hence M / ρ can be made into a left S-semimodule under \oplus and \odot defined by

$$
x \rho \oplus y \rho=(x+y) \rho \quad \text { and } \quad a \odot x \rho=(a x) \rho .
$$

This left S-semimodule is called the quotient semimodule of M modulo N and is denoted by M / N. An element $s \in S$ is called a zero-divisor for a semimodule M if $s m=0$ for some nonzero element m of $M . Z_{S}(M)$ denotes the set of all zero divisors of M. A proper subsemimodule N of M is said to be a prime subsemimodule of M, if $a x \in N, a \in S$ and $x \in M$ then either $x \in N$ or
$a \in(N: M)$ where $(N: M)=\{a \in S: a M \subseteq N\}$ is an associated ideal of S. A proper subsemimodule N of M is said to be a weakly prime if whenever $a \in S, x \in M, 0 \neq a x \in N$ implies $x \in N$ or $a \in(N: M)$. It is easy to prove that prime subsemimodule is always a weakly prime subsemimodule of an S-semimodule M.

Throughout this paper, S will always denote a commutative semiring with identity $1 \neq 0$ and left S-semimodule means unitary semimodules.

2. ϕ-Prime Subsemimodules

In this section we introduce the notion of ϕ-prime subsemimodules of M and give their characterizations.

Definition 2.1. Let $T(M)$ be the set of all subsemimodules of M and $\phi: T(M) \rightarrow$ $T(M) \cup\{\emptyset\}$ be a function. A proper subsemimodule N of M is called a ϕ-prime subsemimodule of M if $s \in S, x \in M$ and $s x \in N \backslash \phi(N)$ implies that $s \in(N: M)$ or $x \in N$.

As $N \backslash \phi(N)=N \backslash(N \cap \phi(N))$, so without loss of generality, we assume throughout the paper that $\phi(N) \subseteq N$. The illustration of ϕ-prime subsemimodule is as follows. Let S be a commutative semiring and $\phi: T(M) \rightarrow T(M) \cup\{\emptyset\}$ be a function. Define

$$
\begin{aligned}
& \phi_{\emptyset}(N)=\emptyset, \quad \forall N \in T(M) \\
& \phi_{0}(N)=\{0\}, \quad \forall N \in T(M) \\
& \phi_{1}(N)=(N: M) N, \quad \forall N \in T(M) \\
& \phi_{2}(N)=(N: M)^{2} N, \quad \forall N \in T(M) \\
& \phi_{\omega}(N)=\bigcap_{i=1}^{\infty}(N: M)^{i} N, \quad \forall N \in T(M)
\end{aligned}
$$

It is clear that $\phi_{\emptyset}, \phi_{0}$-prime subsemimodules are prime, weakly prime subsemimodules respectively.

Definition 2.2. Let S be a semiring and M be an S-semimodule. Then a proper subsemimodule N of M is called M-subtractive subsemimodule of M, if N and $\phi(N)$ (that is, $\phi_{0}(N), \phi_{1}(N), . ., \phi_{\omega}(N)$), both are subtractive subsemimodules of M.

Clearly, every M-subtractive subsemimodule of M is a subtractive subsemimodule of M and it is easy to see that for any M-subtractive subsemimodule and for every positive integer n, we have prime subsemimodules $\Rightarrow \phi_{\omega}$-prime \Rightarrow ϕ_{n}-prime $\Rightarrow \phi_{n-1}$-prime.

Example 2.3. Every submodule of an R-module is an M-subtractive.

Example 2.4. Let S be $Z^{*}=\left(Z_{0}^{+},+, \cdot\right)$.
(1) Consider the subsemimodule $N=2 Z_{0}^{+}$of an S-semimodule $M=\left(Z_{0}^{+},+\right)$. Then the associated ideal $(N: M)$ of N is $\{0,2,4, \ldots\}$. Clearly, $\phi_{1}(N)$ is a subtractive subsemimodule of M. Therefore N is an M-subtractive subsemimodule of M.
(2) Consider $N=2 Z^{*} \times 2 Z^{*}$ be a subsemimodule of an S-semimodule $M=$ $Z^{*} \times Z^{*}$. Then N and $\phi_{1}(N)$ are subtractive subsemimodules of M. Therefore, N is an M-subtractive subsemimodule of M.
(3) Consider the semimodule $M=\left(Z_{12},+\right)$, where Z_{12} is the set of all positive integers modulo 12 . Then $N=\{0,4,8\}$ is a subtractive subsemimodule of M and the associated ideal $(N: M)$ of N is $\{0,4,8\}$ and so $\phi_{1}(N)=\{0,4,8\}$. Therefore, $\phi_{1}(N)$ is subtractive. Consequently, N is an M-subtractive subsemimodule of M.

Result 2.5. Let M be an S-semimodule and N be a proper subsemimodule of M. Then for $x \in M$, the following holds.
(1) If N is subtractive then $(N: M)$ is a subtractive ideal of S.
(2) If N is subtractive then $(N: x)$ is a subtractive ideal of S, where $(N: x)=$ $\{r \in S: r x \in N\}$.
(3) If N is subtractive then $(0: M)$ is a subtractive ideal of S, where $(0: M)=$ $\{r \in S: r M=0\}$.

Proof. Proofs are elementary and hence omitted.

Result 2.6. [13] Let I and J be two subtractive ideals in S. Then $I \cup J$ is a subtractive ideal of S if and only if $I \cup J=I$ or $I \cup J=J$.

Proof. Proof is straight forward.

Theorem 2.7. Let S be a commutative semiring and M be an S-semimodule. Let $\phi: T(M) \rightarrow T(M) \cup\{\emptyset\}$ be a function and N be a ϕ-prime M-subtractive subsemimodule of M such that $(N: M) N \nsubseteq \phi(N)$. Then N is a prime subsemimodule of M.

Proof. Let N be a ϕ-prime M-subtractive subsemimodule of M and $a x \in N$ for some $a \in S$ and $x \in M$. Let $a x \notin \phi(N)$, then $a x \in N \backslash \phi(N)$, which gives, $a \in(N: M)$ or $x \in N$, as N is a ϕ-prime subsemimodule of M. Therefore, N is prime. So, let $a x \in \phi(N)$. Then we can assume that $a N \subseteq \phi(N)$ because if $a N \nsubseteq \phi(N)$, then there exists $n \in N$ such that $a n \notin \phi(N)$ and an $\in N$. Therefore, $a(x+n) \in N \backslash \phi(N)$. Thus we have either $a \in(N: M)$ or $x+n \in N$, that is, $a \in(N: M)$ or $x \in N$, as N is an M-subtractive subsemimodule of M. So N is a prime subsemimodule of M. Next, suppose that $(N: M) x \subseteq \phi(N)$.

If $(N: M) x \nsubseteq \phi(N)$, then there exists $u \in(N: M)$ such that $u x \in(N: M) x$ but $u x \notin \phi(N)$. This implies, $(a+u) x \in N \backslash \phi(N)$. Since N is a ϕ-prime M subtractive subsemimodule, we have either $a+u \in(N: M)$ or $x \in N$, that is, $a \in(N: M)$ or $x \in N$. Therefore, N is prime. Since $(N: M) N \nsubseteq \phi(N)$, then there exist some $r \in(N: M)$ and $n_{1} \in N$ such that $r n_{1} \notin \phi(N)$. So $(a+r)\left(x+n_{1}\right) \in N \backslash \phi(N)$ and hence $(a+r) \in(N: M)$ or $\left(x+n_{1}\right) \in N$, that is, $a \in(N: M)$ or $x \in N$. Therefore, in any case, we have N is a prime subsemimodule of M.

Corollary 2.8. Let N be a weakly prime M-subtractive subsemimodule of an S semimodule M such that $(N: M) N \neq\{0\}$. Then N is a prime subsemimodule of M.

Proof. The proof is obvious by taking $\phi=\phi_{0}$ in the above theorem.

Corollary 2.9. Let M be an S-semimodule and N be a ϕ-prime M-subtractive subsemimodule of M such that $\phi(N) \subseteq(N: M)^{2} N$. Then for every $a \in S$ and $x \in M$, ax $\in N \backslash \bigcap_{i=1}^{\infty}(N: M)^{i} N$ implies that $a \in(N: M)$ or $x \in N$, that is, N is a ϕ_{ω}-prime.

Proof. If N is a prime subsemimodule of M, then there is nothing to prove. Suppose N is not a prime subsemimodule of M. Then by above theorem, we have $(N: M) N \subseteq \phi(N) \subseteq(N: M)^{2} N \subseteq(N: M) N$. This implies $\phi(N)=$ $(N: M) N=(N: M)^{2} N$. Thus, $\phi(N)=(N: M)^{i} N$ for all $i \geq 1$. Hence, N is a ϕ_{ω}-prime subsemimodule of M.

Theorem 2.10. Let M be a cancellative S-semimodule and $0 \neq x \in M$ be such that $S x \neq M$ and $S x$ is an M-subtractive subsemimodule of M. If $S x$ is not a prime subsemimodule of M, then $S x$ is not ϕ_{1}-prime subsemimodule of M.

Proof. Since $S x$ is not a prime subsemimodule of M, then there exist $a \in S$ and $y \in M$ such that $a \notin(S x: M)$ and $y \notin S x$, but $a y \in S x$. Suppose $S x$ is a ϕ_{1}-prime subsemimodule of M and let $a y \notin(S x: M) S x$. Then $a y \in$ $S x \backslash(S x: M) S x$ gives $a \in(S x: M)$ or $y \in S x$, a contradiction.

Again, let $a y \in(S x: M) S x$. We have $y+x \notin S x$ (as $S x$ is subtractive) and $a(y+x) \in S x$. If $a(y+x) \notin(S x: M) S x$, then $a(y+x) \in S x \backslash(S x: M) S x$ gives $a \in(S x: M)$ or $y+x \in S x$, that is, $a \in(S x: M)$ or $y \in S x$, a contradiction. So, we let $a(y+x) \in(S x: M) S x$. Then $a x \in(S x: M) S x$ (as $S x$ is M-subtractive). Therefore, $a x=r \cdot 1 \cdot x=r x$, for some $r \in(S x: M)$ and M is an unitary semimodule, which gives $a=r$, as M is a cancellative semimodule. Therefore, we have $r=a \in(S x: M)$, again we get a contradiction. Hence, $S x$ is not a ϕ_{1}-prime subsemimodule of M.

Corollary 2.11. Let M be a cancellative S-semimodule and $0 \neq x \in M$ be such that $S x \neq M$ and $S x$ is an M-subtractive subsemimodule of M. Then $S x$ is a
prime subsemimodule of M if and only if $S x$ is a ϕ_{1}-prime subsemimodule of M.

Definition 2.12. Let M be an S-semimodule. Then a semimodule M is called M-cancellative if whenever $r m=r n$ for elements $m, n \in M$ and $r \in S$ then $m=n$.

Further, we give another characterization of ϕ_{1}-prime subsemimodule of M.

Theorem 2.13. Let M be an M-cancellative S-semimodule and $a \in S$ be such that $a M \neq M$. Let $a M$ be an M-subtractive subsemimodule of M. Then $a M$ is a ϕ_{1}-prime subsemimodule of M if and only if $a M$ is a prime subsemimodule of M.

Proof. Suppose $a M$ is a ϕ_{1}-prime subsemimodule of M. Let $r x \in a M$, where $r \in S$ and $x \in M$. If $r x \notin(a M: M) a M$, then $r \in(a M: M)$ or $x \in a M$, as $a M$ is a ϕ_{1}-prime subsemimodule of M. Therefore, $a M$ is a prime subsemimodule of M. So, we can assume $r x \in(a M: M) a M$. Also, $(r+a) x \in a M$. If $(r+a) x \notin$ $(a M: M) a M$, then $(r+a) x \in a M \backslash(a M: M) a M$, this implies $(r+a) \in(a M: M)$ or $x \in a M$, that is, $r \in(a M: M)$ or $x \in a M$. Hence, the result follows. Again, suppose $(r+a) x \in(a M: M) a M$, which gives $a x \in(a M: M) a M$, as $a M$ is an M-subtractive. Therefore, there exists $y \in(a M: M) M$ such that $a x=a y$, which gives $x=y$ (as M is an M-cancellative). Hence, $x=y \in(a M: M) M \subseteq$ $a M$. Consequently, $a M$ is a prime subsemimodule of M. Converse is obvious.

Theorem 2.14. Let S be a semiring and M be an S-semimodule. Let N be a proper M-subtractive subsemimodule of M. Then the following statements are equivalent:
(1) N is a ϕ-prime subsemimodule of M;
(2) If $x \in M \backslash N$, then $(N: x)=(N: M) \cup(\phi(N): x)$;
(3) If $x \in M \backslash N$, then $(N: x)=(N: M)$ or $(N: x)=(\phi(N): x)$.

Proof. (1) $\Rightarrow(2)$ Let $x \in M \backslash N$ and $r \in(N: x)$. Then $r x \in N$. If $r x \in \phi(N)$, then $r \in(\phi(N): x)$. Therefore, the result follows. Again, if $r x \notin \phi(N)$, then $r x \in N \backslash \phi(N)$, therefore, $r \in(N: M)$, because N is a ϕ-prime subsemimodule of M. Thus, we have $(N: x)=(N: M) \cup(\phi(N): x)$.
$(2) \Rightarrow(3)$ Let $(N: x)=(N: M) \cup(\phi(N): x)$ for $x \in M \backslash N$. Then either $(N: x)=(N: M)$ or $(N: x)=(\phi(N): x)$ because if an ideal is a union of two subtractive ideals then it is equal to one of them (by Result 2.6). Therefore, the inclusion follows.
$(3) \Rightarrow(1)$ Suppose that $r x \in N \backslash \phi(N)$ for some $r \in S$ and $x \in M$. Then $r x \in N$ and $r x \notin \phi(N)$ implies $r \in(N: x)$ and $r \notin(\phi(N): x)$. Therefore, $(N: x) \neq(\phi(N): x)$. Hence, by given assumption, we have $(N: x)=(N: M)$. Therefore, $r \in(N: M)$ and hence N is a ϕ-prime subsemimodule of M.

Corollary 2.15. Let S be a semiring and M be an S-semimodule. Let N be a proper subtractive subsemimodule of M. Then the following statements are equivalent:
(1) N is a weakly prime subsemimodule of M.
(2) $(N: x)=(N: M) \cup(0: x)$, for any $x \in M \backslash N$.
(3) $(N: x)=(N: M)$ or $(N: x)=(0: x)$, for any $x \in M \backslash N$.

Proof. The proof is follows from above theorem by taking $\phi=\phi_{0}$.

Theorem 2.16. Let N be a proper M-subtractive subsemimodule of M. Then N is a ϕ-prime subsemimodule of M if and only if IP $\subseteq N \backslash \phi(N)$ for some ideal I of S and a subsemimodule P of M, implies either $I \subseteq(N: M)$ or $P \subseteq N$.

Proof. Suppose N is a ϕ-prime subsemimodule of M. Let I be an ideal of S and P be a subsemimodule of M such that $I P \subseteq N \backslash \phi(N)$. Suppose $P \nsubseteq N$. We show $I \subseteq(N: M)$. Let $a \in I$ and $x \in P \backslash N$. Then $a x \in I P \subseteq N \backslash \phi(N)$. By Theorem 2.14, $(N: x)=(N: M)$ or $(N: x)=(\phi(N): x)$. Since $a x \in N \backslash \phi(N)$, therefore $(N: x) \neq(\phi(N): x)$. Hence $(N: x)=(N: M)$. Thus $a \in(N: M)$. This implies that $I \subseteq(N: M)$. Conversely, let $a x \in N \backslash \phi(N)$ for some $a \in S$ and $x \in M$. Considering the ideal generated by $a,\langle a\rangle$ and subsemimodule generated by $x,\langle x\rangle$, we have $\langle a\rangle\langle x\rangle \subseteq N \backslash \phi(N)$. By given supposition, we have $\langle a\rangle \subseteq(N: M)$ or $\langle x\rangle \subseteq N$ and thus $a \in(N: M)$ or $x \in N$. Hence, N is a ϕ-prime subsemimodule of M.

Proposition 2.17. Let N be a ϕ_{1}-prime M-subtractive subsemimodule of M. Then the following holds:
(1) If a is a zero divisor in M / N, then $a N \subseteq(N: M) N$.
(2) Let I be an ideal of S such that $(N: M) \subseteq I$ and $I \subseteq Z_{S}(M / N)$. Then $I N=(N: M) N$.

Proof. (1) Since a is a zero divisor in M / N, therefore there exists $x \in M \backslash N$ such that $a x \in N$. If $a \in(N: M)$, then clearly $a N \subseteq(N: M) N$. So let $a \notin(N: M)$. Then we must have $a x \in(N: M) N$, as N is a ϕ_{1}-prime subsemimodule of M. Let $y \in N$. Then $y+x \notin N$ and $a(y+x) \in N$ (as N is subtractive). Since N is a ϕ_{1}-prime subsemimodule of M, therefore $a(y+x) \in(N: M) N$, which gives $a y \in(N: M) N$. Hence $a N \subseteq(N: M) N$, which is required.
(2) The result is follows from (1).

Theorem 2.18. Let S be a commutative semiring and M be a cyclic S semimodule. Let N be a ϕ_{1}-prime subsemimodule of M. Then $(N: M)$ is a ϕ_{2}-prime ideal of S.

Proof. Let $a b \in(N: M) \backslash \phi_{2}(N: M)$ for some $a, b \in S$ and $a \notin(N: M)$. Let $M=S x$. Therefore, $a b \in(N: M)$ and $a b \notin \phi_{2}(N: M)$. We have
$(N: M)^{2}=((N: M) N: M)$. This gives $a b M \subseteq N$ and $a b M \nsubseteq(N: M) N$. So, $a b x \in N$ but $a b x \notin(N: M) N$, that is, $a b x \in N \backslash \phi_{2}(N)$. Therefore $b \in(N: M)$, because $a x \notin N$ and N is a ϕ_{1}-prime subsemimodule of M. Hence ($N: M$) is a ϕ_{2}-prime ideal of S.

References

[1] D.D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra 36 (2008) 686-696.
[2] D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003) 831-840.
[3] M.R. Adhikari and P. Mukhopadhyay, Exact sequences of semimodules, Bull. Cal. Math. Soc. 94 (1) (2002) 23-32.
[4] P.J. Allen, N. Eggers, H.S. Kim, Ideal theory in commutative A-semiring, Kyungpook Math. Journal 26 (2006) 261-271.
[5] S.E. Atani, On primal and weakly primal ideals over commutative semirings, Glas. Math. 43 (2008) 13-23.
[6] R.E. Atani and S.E. Atani, Spectra of semimodules, Bull. Acad. Stiiunte. Rep. Mold. Matematica 3 (2011) 15-28.
[7] R.E. Atani and S.E. Atani, On subsemimodules of semimodules, Bull. Acad. Stiiunte. Rep. Mold. Matematica 2 (2010) 20-30.
[8] S.K. Bhambri and M.K. Dubey, Extensions of semimodules and injective semimodules, Southeast Asian Bull. Math. 34 (1) (2010) 25-41.
[9] S.K. Bhambri, M.K. Dubey, Anuradha, On prime, weakly prime left ideals and weakly regular ternary semirings, Southeast Asian Bull. Math. 37 (6) (2013) 801811.
[10] S.M. Bhatwadekar and P.K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005) 43-49.
[11] J. Dauns, Prime modules, J. Reine Angew. Math. 298 (1978) 156-181.
[12] J.S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, In: Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical, Harlow UK, 1992.
[13] V. Gupta and J.N. Chaudhari, Characterization of weakly prime subtractive ideals in semirings, Bull. Inst. Math. Acad. Sin. (N.S.) 3 (2) (2008) 347-352.
[14] D.R. Latore, On h-ideals and k-ideals in Hemiring, Bull. Math. Debrecen 12 (1965) 219-226.
[15] C.P. Lu, Prime submodules, Comm. Math. Univ. Sancti. Pauli 33 (1984) 61-69.
[16] N. Zamani, ϕ-prime submodules, Glasgow Math. Journal 52 (2010) 253-259.

