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Abstract. Let S be a commutative semiring with unity and M be an unitary left S-

semimodule. Let � : T (M) → T (M) ∪ {∅} be a function, where T (M) is the set

of all subsemimodules of M . A proper subsemimodule N of M is called a �-prime

subsemimodule of M if s ∈ S, x ∈ M , sx ∈ N ∖ �(N), then either s ∈ (N : M) or

x ∈ N . In this paper, we study the concept of �-prime subsemimodule which is a

generalization of �-prime ideal in a commutative ring and give some characterizations

in terms of M -subtractive subsemimodules.

Keywords: Semiring; Semimodule; �-prime subsemimodule; M -subtractive subsemi-

module.

1. Introduction

D.D. Anderson and E. Smith in [2], have first introduced the concept of a weakly
prime ideal in a commutative ring with unity for the study of factorizations in
a commutative ring with zero divisors. S.M. Bhatwadekar and P.K. Sharma
in [10], have extended the concept in terms of almost prime ideals in commu-
tative ring with non zero identity. Further, D.D. Anderson and M. Bataineh
in [1] have generalized this concept and define the notion of �-prime ideals in
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commutative ring. Recently, N. Zamani in [16], has introduced the notion of
�-prime submodule and prove analogous of some of the properties of �-prime
ideals of commutative ring for �-prime submodules. Recent work on the topics
of semimodules have been considered and studied in [8], [9], [3], [6], [7], [10] and
[13].

In this paper, we have extended the results of prime ideals of commutative
ring to prime subsemimodules of semimodules. By a commutative semiring we
mean a commutative semigroup (S, ⋅) and a commutative monoid (S,+, 0s) in
which 0s is the additive identity and 0s ⋅ x = x ⋅ 0s = 0s for all x ∈ S, both are
connected by the ring like distributivity. A non-empty subset I of a semiring S
is called an ideal of S if a, b ∈ I and s ∈ S, then a + b ∈ I and sa, as ∈ I. An
ideal I of a semiring S is called subtractive if a, a+ b ∈ I, b ∈ S then b ∈ I. A
prime ideal P of a semiring S is an ideal with the property that for a, b ∈ S,
ab ∈ P implies a ∈ P or b ∈ P . A proper ideal P of a commutative semiring
is called weakly prime if 0 ∕= ab ∈ P implies a ∈ P or b ∈ P . A prime ideal is
always a weakly prime ideal of a semiring S but converse needs not be true.

Let S be a semiring. A left S-semimoduleM is a commutative monoid (M,+)
which have a zero element 0M , together with an operation S×M → M , denoted
by (a, x) → ax such that for all a, b ∈ S and x, y ∈ M ,

(1) a(x+ y) = ax+ ay,

(2) (a+ b)x = ax+ bx,

(3) (ab)x = a(bx),

(4) 0s ⋅ x = 0M = a ⋅ 0M .

A non-empty subset N of a left S-semimodule M is called subtractive if
a, a+ b ∈ N , b ∈ M then b ∈ N .

A left S-semimodule M is called cyclic if M can be generated by a single
element, that is, M = ⟨m⟩ = Sm = {sm : s ∈ S} for some m in M . A left
S-semimodule M is called cancellative if whenever rx = sx for elements r, s ∈ S
and x ∈ M then r = s. Let M be a left S-semimodule. An equivalence relation
� of M is said to be a congruence relation if (a, b) ∈ � implies (a+ c, b + c) ∈ �
for all c ∈ M and (ra, rb) ∈ � for all r ∈ S. Let N be a subsemimodule of M .
The Bourne relation (Latorre 1965) � on M is defined as

� = {(x, y) ∈ M ×M : x+ i = y + j for some i, j ∈ N}.

Then � is a congruence relation on M . Hence M/� can be made into a left
S-semimodule under ⊕ and ⊙ defined by

x�⊕ y� = (x+ y)� and a⊙ x� = (ax)� .

This left S-semimodule is called the quotient semimodule of M modulo N and
is denoted by M/N . An element s ∈ S is called a zero-divisor for a semimodule
M if sm = 0 for some nonzero element m of M . ZS(M) denotes the set of
all zero divisors of M . A proper subsemimodule N of M is said to be a prime
subsemimodule of M , if ax ∈ N , a ∈ S and x ∈ M then either x ∈ N or
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a ∈ (N : M) where (N : M) = {a ∈ S : aM ⊆ N} is an associated ideal of
S. A proper subsemimodule N of M is said to be a weakly prime if whenever
a ∈ S, x ∈ M , 0 ∕= ax ∈ N implies x ∈ N or a ∈ (N : M). It is easy to
prove that prime subsemimodule is always a weakly prime subsemimodule of an
S-semimodule M .

Throughout this paper, S will always denote a commutative semiring with
identity 1 ∕= 0 and left S-semimodule means unitary semimodules.

2. �-Prime Subsemimodules

In this section we introduce the notion of �-prime subsemimodules of M and
give their characterizations.

Definition 2.1. Let T (M) be the set of all subsemimodules of M and � : T (M) →
T (M)∪ {∅} be a function. A proper subsemimodule N of M is called a �-prime
subsemimodule of M if s ∈ S, x ∈ M and sx ∈ N∖�(N) implies that s ∈ (N : M)
or x ∈ N .

As N ∖ �(N) = N ∖ (N ∩ �(N)), so without loss of generality, we assume
throughout the paper that �(N) ⊆ N . The illustration of �-prime subsemimod-
ule is as follows. Let S be a commutative semiring and � : T (M) → T (M)∪{∅}
be a function. Define

�∅(N) = ∅, ∀ N ∈ T (M)

�0(N) = {0}, ∀ N ∈ T (M)

�1(N) = (N : M)N, ∀ N ∈ T (M)

�2(N) = (N : M)2N, ∀ N ∈ T (M)

�!(N) =
∞∩

i=1

(N : M)iN, ∀ N ∈ T (M)

It is clear that �∅, �0-prime subsemimodules are prime, weakly prime subsemi-
modules respectively.

Definition 2.2. Let S be a semiring and M be an S-semimodule. Then a proper
subsemimodule N of M is called M -subtractive subsemimodule of M , if N and
�(N) (that is, �0(N), �1(N), .., �!(N)), both are subtractive subsemimodules of
M .

Clearly, every M -subtractive subsemimodule of M is a subtractive subsemi-
module of M and it is easy to see that for any M−subtractive subsemimodule
and for every positive integer n, we have prime subsemimodules ⇒ �!-prime ⇒
�n-prime ⇒ �n−1-prime.
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Example 2.3. Every submodule of an R-module is an M -subtractive.

Example 2.4. Let S be Z∗ = (Z+
0 ,+, ⋅).

(1) Consider the subsemimodule N = 2Z+
0 of an S-semimodule M = (Z+

0 ,+).
Then the associated ideal (N : M) of N is {0, 2, 4, . . .}. Clearly, �1(N)
is a subtractive subsemimodule of M . Therefore N is an M -subtractive
subsemimodule of M .

(2) Consider N = 2Z∗ × 2Z∗ be a subsemimodule of an S-semimodule M =
Z∗×Z∗. Then N and �1(N) are subtractive subsemimodules of M . There-
fore, N is an M -subtractive subsemimodule of M .

(3) Consider the semimodule M = (Z12,+), where Z12 is the set of all pos-
itive integers modulo 12. Then N = {0, 4, 8} is a subtractive subsemi-
module of M and the associated ideal (N : M) of N is {0, 4, 8} and so
�1(N) = {0, 4, 8}. Therefore, �1(N) is subtractive. Consequently, N is an
M -subtractive subsemimodule of M .

Result 2.5. Let M be an S-semimodule and N be a proper subsemimodule of M .
Then for x ∈ M , the following holds.

(1) If N is subtractive then (N : M) is a subtractive ideal of S.

(2) If N is subtractive then (N : x) is a subtractive ideal of S, where (N : x) =
{r ∈ S : rx ∈ N}.

(3) If N is subtractive then (0 : M) is a subtractive ideal of S, where (0 : M) =
{r ∈ S : rM = 0}.

Proof. Proofs are elementary and hence omitted.

Result 2.6. [13] Let I and J be two subtractive ideals in S. Then I ∪ J is a
subtractive ideal of S if and only if I ∪ J = I or I ∪ J = J .

Proof. Proof is straight forward.

Theorem 2.7. Let S be a commutative semiring and M be an S-semimodule.
Let � : T (M) → T (M) ∪ {∅} be a function and N be a �-prime M -subtractive
subsemimodule of M such that (N : M)N ⊈ �(N). Then N is a prime subsemi-
module of M .

Proof. Let N be a �-prime M -subtractive subsemimodule of M and ax ∈ N for
some a ∈ S and x ∈ M . Let ax /∈ �(N), then ax ∈ N ∖ �(N), which gives,
a ∈ (N : M) or x ∈ N , as N is a �-prime subsemimodule of M . Therefore,
N is prime. So, let ax ∈ �(N). Then we can assume that aN ⊆ �(N) because
if aN ⊈ �(N), then there exists n ∈ N such that an /∈ �(N) and an ∈ N .
Therefore, a(x+n) ∈ N ∖�(N). Thus we have either a ∈ (N : M) or x+n ∈ N ,
that is, a ∈ (N : M) or x ∈ N , as N is an M -subtractive subsemimodule of M .
So N is a prime subsemimodule of M . Next, suppose that (N : M)x ⊆ �(N).
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If (N : M)x ⊈ �(N), then there exists u ∈ (N : M) such that ux ∈ (N : M)x
but ux /∈ �(N). This implies, (a + u)x ∈ N ∖ �(N). Since N is a �-prime M -
subtractive subsemimodule, we have either a + u ∈ (N : M) or x ∈ N , that
is, a ∈ (N : M) or x ∈ N . Therefore, N is prime. Since (N : M)N ⊈ �(N),
then there exist some r ∈ (N : M) and n1 ∈ N such that rn1 /∈ �(N). So
(a + r)(x + n1) ∈ N ∖ �(N) and hence (a + r) ∈ (N : M) or (x + n1) ∈ N ,
that is, a ∈ (N : M) or x ∈ N . Therefore, in any case, we have N is a prime
subsemimodule of M .

Corollary 2.8. Let N be a weakly prime M -subtractive subsemimodule of an S-
semimodule M such that (N : M)N ∕= {0}. Then N is a prime subsemimodule
of M .

Proof. The proof is obvious by taking � = �0 in the above theorem.

Corollary 2.9. Let M be an S-semimodule and N be a �-prime M -subtractive
subsemimodule of M such that �(N) ⊆ (N : M)2N . Then for every a ∈ S and
x ∈ M , ax ∈ N ∖

∩∞
i=1

(N : M)iN implies that a ∈ (N : M) or x ∈ N , that is,
N is a �!-prime.

Proof. If N is a prime subsemimodule of M , then there is nothing to prove.
Suppose N is not a prime subsemimodule of M . Then by above theorem, we
have (N : M)N ⊆ �(N) ⊆ (N : M)2N ⊆ (N : M)N . This implies �(N) =
(N : M)N = (N : M)2N . Thus, �(N) = (N : M)iN for all i ≥ 1. Hence, N is
a �!-prime subsemimodule of M .

Theorem 2.10. Let M be a cancellative S-semimodule and 0 ∕= x ∈ M be such
that Sx ∕= M and Sx is an M -subtractive subsemimodule of M . If Sx is not a
prime subsemimodule of M , then Sx is not �1-prime subsemimodule of M .

Proof. Since Sx is not a prime subsemimodule of M , then there exist a ∈ S
and y ∈ M such that a /∈ (Sx : M) and y /∈ Sx, but ay ∈ Sx. Suppose
Sx is a �1-prime subsemimodule of M and let ay /∈ (Sx : M)Sx. Then ay ∈
Sx ∖ (Sx : M)Sx gives a ∈ (Sx : M) or y ∈ Sx, a contradiction.

Again, let ay ∈ (Sx : M)Sx. We have y + x /∈ Sx (as Sx is subtractive) and
a(y+ x) ∈ Sx. If a(y+ x) /∈ (Sx : M)Sx, then a(y+ x) ∈ Sx ∖ (Sx : M)Sx gives
a ∈ (Sx : M) or y+x ∈ Sx, that is, a ∈ (Sx : M) or y ∈ Sx, a contradiction. So,
we let a(y+x) ∈ (Sx : M)Sx. Then ax ∈ (Sx : M)Sx (as Sx is M -subtractive).
Therefore, ax = r ⋅ 1 ⋅ x = rx, for some r ∈ (Sx : M) and M is an unitary
semimodule, which gives a = r, as M is a cancellative semimodule. Therefore,
we have r = a ∈ (Sx : M), again we get a contradiction. Hence, Sx is not a
�1-prime subsemimodule of M .

Corollary 2.11. Let M be a cancellative S-semimodule and 0 ∕= x ∈ M be such
that Sx ∕= M and Sx is an M -subtractive subsemimodule of M . Then Sx is a
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prime subsemimodule of M if and only if Sx is a �1-prime subsemimodule of
M .

Definition 2.12. Let M be an S−semimodule. Then a semimodule M is called
M−cancellative if whenever rm = rn for elements m,n ∈ M and r ∈ S then
m = n.

Further, we give another characterization of �1-prime subsemimodule of M .

Theorem 2.13. Let M be an M -cancellative S-semimodule and a ∈ S be such
that aM ∕= M . Let aM be an M -subtractive subsemimodule of M . Then aM is
a �1-prime subsemimodule of M if and only if aM is a prime subsemimodule of
M .

Proof. Suppose aM is a �1-prime subsemimodule of M . Let rx ∈ aM , where
r ∈ S and x ∈ M . If rx /∈ (aM : M)aM , then r ∈ (aM : M) or x ∈ aM , as aM
is a �1-prime subsemimodule of M . Therefore, aM is a prime subsemimodule of
M . So, we can assume rx ∈ (aM : M)aM . Also, (r + a)x ∈ aM . If (r + a)x /∈
(aM : M)aM , then (r+a)x ∈ aM∖(aM : M)aM , this implies (r+a) ∈ (aM : M)
or x ∈ aM , that is, r ∈ (aM : M) or x ∈ aM . Hence, the result follows. Again,
suppose (r + a)x ∈ (aM : M)aM , which gives ax ∈ (aM : M)aM , as aM is
an M -subtractive. Therefore, there exists y ∈ (aM : M)M such that ax = ay,
which gives x = y (as M is an M -cancellative). Hence, x = y ∈ (aM : M)M ⊆
aM . Consequently, aM is a prime subsemimodule of M . Converse is obvious.

Theorem 2.14. Let S be a semiring and M be an S-semimodule. Let N be a
proper M−subtractive subsemimodule of M . Then the following statements are
equivalent:

(1) N is a �-prime subsemimodule of M ;

(2) If x ∈ M ∖N , then (N : x) = (N : M) ∪ (�(N) : x);

(3) If x ∈ M ∖N , then (N : x) = (N : M) or (N : x) = (�(N) : x).

Proof. (1)⇒(2) Let x ∈ M ∖ N and r ∈ (N : x). Then rx ∈ N . If rx ∈ �(N),
then r ∈ (�(N) : x). Therefore, the result follows. Again, if rx /∈ �(N), then
rx ∈ N ∖ �(N), therefore, r ∈ (N : M), because N is a �-prime subsemimodule
of M . Thus, we have (N : x) = (N : M) ∪ (�(N) : x).

(2)⇒(3) Let (N : x) = (N : M) ∪ (�(N) : x) for x ∈ M ∖ N . Then either
(N : x) = (N : M) or (N : x) = (�(N) : x) because if an ideal is a union of two
subtractive ideals then it is equal to one of them (by Result 2.6). Therefore, the
inclusion follows.

(3)⇒(1) Suppose that rx ∈ N ∖ �(N) for some r ∈ S and x ∈ M . Then
rx ∈ N and rx /∈ �(N) implies r ∈ (N : x) and r /∈ (�(N) : x). Therefore,
(N : x) ∕= (�(N) : x). Hence, by given assumption, we have (N : x) = (N : M).
Therefore, r ∈ (N : M) and hence N is a �-prime subsemimodule of M .



Generalizations of Prime Subsemimodules 475

Corollary 2.15. Let S be a semiring and M be an S-semimodule. Let N be
a proper subtractive subsemimodule of M . Then the following statements are
equivalent :

(1) N is a weakly prime subsemimodule of M .

(2) (N : x) = (N : M) ∪ (0 : x), for any x ∈ M ∖N .

(3) (N : x) = (N : M) or (N : x) = (0 : x), for any x ∈ M ∖N .

Proof. The proof is follows from above theorem by taking � = �0.

Theorem 2.16. Let N be a proper M -subtractive subsemimodule of M . Then N
is a �-prime subsemimodule of M if and only if IP ⊆ N ∖ �(N) for some ideal
I of S and a subsemimodule P of M , implies either I ⊆ (N : M) or P ⊆ N .

Proof. Suppose N is a �-prime subsemimodule of M . Let I be an ideal of S and
P be a subsemimodule of M such that IP ⊆ N ∖ �(N). Suppose P ⊈ N . We
show I ⊆ (N : M). Let a ∈ I and x ∈ P ∖ N . Then ax ∈ IP ⊆ N ∖ �(N). By
Theorem 2.14, (N : x) = (N : M) or (N : x) = (�(N) : x). Since ax ∈ N ∖�(N),
therefore (N : x) ∕= (�(N) : x). Hence (N : x) = (N : M). Thus a ∈ (N : M).
This implies that I ⊆ (N : M). Conversely, let ax ∈ N ∖ �(N) for some a ∈ S
and x ∈ M . Considering the ideal generated by a, ⟨a⟩ and subsemimodule
generated by x, ⟨x⟩, we have ⟨a⟩⟨x⟩ ⊆ N ∖ �(N). By given supposition, we have
⟨a⟩ ⊆ (N : M) or ⟨x⟩ ⊆ N and thus a ∈ (N : M) or x ∈ N . Hence, N is a
�-prime subsemimodule of M .

Proposition 2.17. Let N be a �1-prime M -subtractive subsemimodule of M .
Then the following holds:

(1) If a is a zero divisor in M/N , then aN ⊆ (N : M)N .

(2) Let I be an ideal of S such that (N : M) ⊆ I and I ⊆ ZS(M/N). Then
IN = (N : M)N .

Proof. (1) Since a is a zero divisor in M/N , therefore there exists x ∈ M ∖N such
that ax ∈ N . If a ∈ (N : M), then clearly aN ⊆ (N : M)N . So let a /∈ (N : M).
Then we must have ax ∈ (N : M)N , as N is a �1-prime subsemimodule of M .
Let y ∈ N . Then y + x /∈ N and a(y + x) ∈ N (as N is subtractive). Since N
is a �1-prime subsemimodule of M , therefore a(y+ x) ∈ (N : M)N , which gives
ay ∈ (N : M)N . Hence aN ⊆ (N : M)N , which is required.

(2) The result is follows from (1).

Theorem 2.18. Let S be a commutative semiring and M be a cyclic S-
semimodule. Let N be a �1-prime subsemimodule of M . Then (N : M) is a
�2-prime ideal of S.

Proof. Let ab ∈ (N : M) ∖ �2(N : M) for some a, b ∈ S and a /∈ (N : M).
Let M = Sx. Therefore, ab ∈ (N : M) and ab /∈ �2(N : M). We have
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(N : M)2 = ((N : M)N : M). This gives abM ⊆ N and abM ⊈ (N : M)N . So,
abx ∈ N but abx /∈ (N : M)N , that is, abx ∈ N ∖�2(N). Therefore b ∈ (N : M),
because ax /∈ N and N is a �1-prime subsemimodule of M . Hence (N : M) is a
�2-prime ideal of S.
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