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ON (n− 1, n)-φ-PRIME IDEALS IN SEMIRINGS

Manish Kant Dubey and Poonam Sarohe

Abstract. Let S be a commutative semiring and T (S) be the set of all ideals of S. Let
φ : T (S) → T (S)∪{∅} be a function. A proper ideal I of a semiring S is called an (n−1, n)-φ-prime
ideal of S if a1a2 · · · an ∈ I \ φ(I), a1, a2, . . . , an ∈ S implies that a1a2 · · · ai−1ai+1 · · · an ∈ I for
some i ∈ {1, 2, . . . , n}. In this paper, we prove several results concerning (n− 1, n)-φ-prime ideals
in a commutative semiring S with non-zero identity connected with those in commutative ring
theory.

1. Introduction

Anderson and Bataineh [3] have introduced the concept of φ-prime ideals in
a commutative ring as a generalization of weakly prime ideals in a commutative
ring introduced by Anderson and Smith [4]. After that several authors [2,6–11,16],
etc. explored this concept in different ways either in commutative ring or semiring
theory. Ebrahimpour and Nekooei [13] generalized the concept of φ-prime ideals in
terms of (n− 1, n)-φ-prime ideals in commutative rings with non-zero identity and
extended several results connected to [3]. In this paper, we introduce the notion
of (n − 1, n)-φ-prime ideals in a commutative semiring and prove several results
connected with ring theory. Most of the results are inspired by [3,9,13,14].

A commutative semiring is a commutative semigroup (S, ·) and a commutative
monoid (S, +, 0S) in which the multiplication is distributive with respect to the
addition both from the left and from the right and 0S is the additive identity of S
and also 0S · x = x · 0S = 0S for all x ∈ S. A non-empty subset I of a semiring
S is called an ideal of S if a, b ∈ I and s ∈ S imply a + b ∈ I and sa, as ∈ I. An
ideal I of a semiring S is said to be proper if I 6= S. An ideal I of a semiring S
is called subtractive (also, a k-ideal) if a, a + b ∈ I, b ∈ S imply b ∈ I. An ideal
I of a semiring S is called prime (weakly prime, almost prime, n-almost prime)
if ab ∈ I (respectively, ab ∈ I \ {0}, ab ∈ I \ I2, ab ∈ I \ In) implies that either
a ∈ I or b ∈ I. A non-zero element a ∈ S is said to be a semi-unit in S if there
exist r, s ∈ S such that 1 + ra = sa. A proper ideal I of a semiring S is called
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2-absorbing (respectively, weakly 2-absorbing) if abc ∈ I (respectively, 0 6= abc ∈ I)
implies ab ∈ I or ac ∈ I or bc ∈ I. For the rest of the concepts and terminologies
used in semiring theory, we refer to [15]. Throughout this paper, S will always
denote a commutative semiring with identity 1 6= 0.

2. (n− 1, n)-φ-prime ideals

In this section, we introduce the notion of (n−1, n)-φ-prime ideals of a semiring
S and analyse some properties related to them.

Definition 2.1. Let S be a semiring and T (S) be the set of all ideals of S.
Let φ : T (S) → T (S)∪{∅} be a function. A proper ideal I of a semiring S is called
an (n− 1, n)-φ-prime ideal of S, if a1a2 · · · an ∈ I \ φ(I), a1, a2, . . . , an ∈ S implies
that a1a2 · · · ai−1ai+1 · · · an ∈ I for some i ∈ {1, 2, . . . , n}.

Note that for n ≥ 2, (n − 1, n)-prime ideal denotes (n − 1)-absorbing ideal
I (analogous to [2]) of S, that is, a proper ideal I of S is called an n-absorbing
ideal if whenever a1a2 · · · an+1 ∈ I for a1, a2, . . . , an+1 ∈ S, then there are n of
the ai’s whose product is in I. Thus, a (1, 2)-prime ideal is just a prime ideal, a
(2, 3)-prime ideal is a 2-absorbing ideal and an (n− 1, n)-prime ideal is an (n− 1)-
absorbing ideal of S. Similarly, a proper ideal I of a semiring S is called an
(n− 1, n)-weakly prime ideal of S if a1a2 · · · an ∈ I \ {0}, a1, a2, . . . , an ∈ S implies
a1a2 · · · ai−1ai+1 · · · an ∈ I for some i ∈ {1, 2, . . . , n}. It is clear that every (n−1, n)-
prime ideal is an (n − 1, n)-weakly prime ideal of a semiring S but the converse
need not be true. For example, by definition {0} is an (n − 1, n)-weakly prime
ideal but it is not an (n − 1, n)-prime ideal of S. Some non-trivial examples of
(n− 1, n)-weakly prime ideals that are not (n− 1, n)-prime are given as follows.

(i). Let S = Z2n (n ≥ 2), where Z is the set of all positive integers. Con-
sider I = {0, 2n−1}. Clearly, I is an ideal of S. Now, let S1 = S × I and
N = {(0, 0), (0, 2n−1)}. Then N is a non-zero (n − 1, n)-weakly prime ideal of
S1 but it is not an (n−1, n)-prime ideal of S1, since (2, 0)n ∈ N but (2, 0)n−1 /∈ N .

(ii). Let S = Z2np (n ≥ 2), where Z is the set of all positive integers and p is any
prime number. Let I = {0, 2n−1p}. Let S1 = S × I and N = {(0, 0), (0, 2n−1p)}.
Clearly, N is a non-zero (n − 1, n)-weakly prime ideal of S1 but it is not an
(n − 1, n)-prime ideal of S1, since (2, 0)n(p, 0) ∈ N but neither (2, 0)n ∈ N nor
(2, 0)n−1(p, 0) ∈ N .

Similarly, an (n− 1, n)-φ-prime ideal I of S can be elucidated as follows:
If φ0(I) = {0}, then an (n− 1, n)-φ0-prime ideal is called an (n− 1, n)-weakly

prime ideal. Similarly, if φ2(I) = I2, then an (n− 1, n)-φ2-prime ideal is called an
(n − 1, n)-almost prime ideal, (1, 2)-φ0-prime ideal means weakly prime ideal and
(2, 3)-φ0-prime ideal means weakly 2-absorbing ideal of a commutative semiring.

Since I \ φ(I) = I \ (I ∩ φ(I)), so without loss of generality, we assume,
throughout the paper that φ(I) ⊆ I. Let S be a semiring and T (S) be the set of
all ideals of S. Define the following functions φα : T (S) → T (S) ∪ {∅} and their
corresponding φα-prime ideals as follows: φ∅(I) = {∅}; φ0(I) = {0}; φ1(I) = I;
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φ2(I) = I2; φn(I) = In, n ≥ 2; φω(I) =
⋂∞

n=1 In for all I ∈ T (S). Clearly, φ∅,
φ0, φ2 and φn are prime, weakly prime, almost prime and n-almost prime ideals
respectively.

Definition 2.2. [12, Definition 2.2] Let S be a semiring and φ : T (S) →
T (S) ∪ {∅} be a function, where T (S) is the set of all ideals of S and let I be an
ideal of S. Then I is said to be a φ-subtractive ideal of S if I and φ(I) are subtractive
ideals of S. Similarly, we define the following functions φα : T (S) → T (S)∪{∅} and
their corresponding φα-prime ideals such that φ∅(I) = {∅}; φ0(I) = {0}; φ1(I) = I;
φ2(I) = I2; φn(I) = In, n ≥ 2 for all I ∈ T (S). Then I is said to be a φi-subtractive
ideal of S if I and φi(I) are subtractive ideals of S, where 2 ≤ i ≤ n.

Several examples have been studied in [12]. For the sake of completeness, we
consider the set S = Z8 = {0, 1, 2, 3, 4, 5, 6, 7}. Then S forms a semiring under
addition and multiplication modulo 8. If we take the set I = {0, 2, 4, 6}, then it is
easy to check that I and φi(I) (as defined above) are subtractive ideals of S and
therefore I is a φi-subtractive ideal of S, where 2 ≤ i ≤ n.

Proposition 2.3. Let S be a semiring and I be an ideal of S. Let x ∈ S. Then
(I : x) and (0 : x) are also subtractive ideals of S, where (I : x) = {r ∈ S : rx ∈ I}
and (0 : x) = {r ∈ S : rx = 0}.

Proof. The proof is straightforward.

Result 2.4. [16] If I and J are two subtractive ideals of S, then I ∪ J is a
subtractive ideal of S if and only if I ∪ J = I or I ∪ J = J .

Theorem 2.5. Let φ : T (S) → T (S)∪{∅} be a function and I be a subtractive
proper ideal of S. Then the following statements are equivalent:
(i) I is (n− 1, n)-φ-prime;
(ii) for a1a2 · · · an−1 ∈ S \ I, (I : a1a2 · · · an−1) =⋃n−1

i=1 (I : a1a2 · · · ai−1ai+1 · · · an−1) ∪ (φ(I) : a1a2 · · · an−1).
Proof. (i) ⇒ (ii) Let a1a2 · · · an−1 ∈ S \ I and let x ∈ (I : a1a2 · · · an−1).

Then a1a2 · · · an−1x ∈ I. If a1a2 · · · an−1x /∈ φ(I), then a1a2 · · · an−1x ∈ I \ φ(I).
Since I is (n − 1, n)-φ-prime, then we have a1a2 · · · ai−1ai+1 · · · an−1x ∈ I for
some i ∈ {1, 2, . . . , n − 1}. Hence x ∈ (I : a1a2 · · · ai−1ai+1 · · · an−1). If
a1a2 · · · an−1x ∈ φ(I), then x ∈ (φ(I) : a1a2 · · · an−1). Thus, (I : a1a2 · · · an−1) ⊆⋃n−1

i=1 (I : a1a2 · · · ai−1ai+1 · · · an−1) ∪ (φ(I) : a1a2 · · · an−1). Clearly,
⋃n−1

i=1 (I :
a1a2 · · · ai−1ai+1 · · · an−1)∪(φ(I) : a1a2 · · · an−1) ⊆ (I : a1a2 · · · an−1), since φ(I) ⊆
I. Therefore, (I : a1a2 · · · an−1) =

⋃n−1
i=1 (I : a1a2 · · · ai−1ai+1 · · · an−1) ∪ (φ(I) :

a1a2 · · · an−1).
(ii) ⇒ (i) Let a1a2 · · · an ∈ I \ φ(I). If a1a2 · · · an−1 ∈ I, then we are

done. So assume that a1a2 · · · an−1 /∈ I. Therefore, we have (I : a1a2 · · · an−1) =⋃n−1
i=1 (I : a1a2 · · · ai−1ai+1 · · · an−1) ∪ (φ(I) : a1a2 · · · an−1). Since a1a2 · · · an ∈ I,

we have an ∈ (I : a1a2 · · · an−1). Also an /∈ (φ(I) : a1a2 · · · an−1). Therefore, (I :
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a1a2 · · · an−1) 6= (φ(I) : a1a2 · · · an−1). Thus an ∈ (I : a1a2 · · · ai−1ai+1 · · · an−1)
for some i ∈ {1, 2, . . . , n − 1}. Hence a1a2 · · · ai−1ai+1 · · · an−1an ∈ I gives I is
(n− 1, n)-φ-prime.

Corollary 2.6. Let I be a proper subtractive ideal of S. Then the following
statements are equivalent:
(i) I is (n− 1, n)-weakly prime;
(ii) for a1a2 · · · an−1 ∈ S \ I, (I : a1a2 · · · an−1) =⋃n−1

i=1 (I : a1a2 · · · ai−1ai+1 · · · an−1) ∪ (0 : a1a2 · · · an−1).

Theorem 2.7. Let S be a semiring, I be a proper φ-subtractive ideal of S and
φ : T (S) → T (S) ∪ {∅} be a function. If I is an (n− 1, n)-φ-prime ideal of S with
In * φ(I), then I is an (n− 1, n)-prime ideal of S.

Proof. Let I be an (n − 1, n)-φ-prime ideal of S with In * φ(I) and let
a1a2 · · · an ∈ I for some a1, a2, . . . , an ∈ S. If a1a2 · · · an /∈ φ(I), then a1a2 · · · an ∈
I \ φ(I), which gives a1a2 · · · ai−1ai+1 · · · an ∈ I for some i ∈ {1, 2, . . . , n}, since
I is an (n − 1, n)-φ-prime ideal of S. So assume that a1a2 · · · an ∈ φ(I). First,
suppose that a1a2 · · · an−mIm * φ(I) for all m ∈ {1, 2, . . . , n − 1}. Therefore
there exists i1, i2, . . . , im ∈ I such that a1a2 · · · an−mi1i2 · · · im /∈ φ(I). Then
a1a2 · · · an−m(an−m+1 + i1)(an−m+2 + i2) · · · (an + im) ∈ I \ φ(I), since I is a
φ-subtractive ideal of S. So a1a2 · · · ai−1ai+1 · · · an ∈ I, since I is φ-subtractive
(n − 1, n)-φ-prime ideal. Now, suppose that a1a2 · · · an−mIm ⊆ φ(I) for all
m ∈ {1, 2, . . . , n − 1}. Similarly, we can assume that for all l1, l2, . . . , ln−m

from {1, 2, . . . , n}, al1al2 · · · aln−mIm ⊆ φ(I), 1 ≤ m ≤ n − 1. Since In *
φ(I), there exist m1,m2, . . . , mn ∈ I such that m1m2 · · ·mn /∈ φ(I). Then
(a1 + m1)(a2 + m2) · · · (an + mn) ∈ I \ φ(I), since I is φ-subtractive. Thus,
(a1 + m1)(a2 + m2) · · · (ai−1 + mi−1)(ai+1 + mi+1) · · · (an + mn) ∈ I for some
i ∈ {1, 2, . . . , n}. Therefore, a1a2 · · · ai−1ai+1 · · · an ∈ I, since I is a φ-subtractive
(n− 1, n)-φ-prime ideal. Hence I is an (n− 1, n)-prime ideal of S.

Corollary 2.8. Let S be a semiring and I be a proper subtractive ideal of S.
If I is an (n− 1, n)-weakly prime ideal of S that is not an (n− 1, n)-prime ideal of
S, then In = 0.

Corollary 2.9. Let S be a semiring and I be a proper subtractive ideal of S.
If I is an (n− 1, n)-weakly prime ideal of S that is not an (n− 1, n)-prime ideal of
S, then

√
I =

√
0.

Proof. Clearly,
√

0 ⊆ √
I. Also by Corollary 2.8, we have In = 0, which gives

I =
√

0 and hence
√

I ⊆ √
0. Thus we have

√
I =

√
0.

If I is a proper ideal of a semiring S such that In = {0}, then it need not be
an (n − 1, n)-weakly prime ideal of S (n ≥ 2). For example, let S = Z2n+13 be a
semiring, where Z is the set of positive integers. If we take an ideal I = {0, 2n3},
then In = {0} but it is not an (n− 1, n)-weakly prime ideal of S, since 0 6= 2n3 ∈ I
but neither 2n ∈ I nor 2n−13 ∈ I.



226 M. K. Dubey, P. Sarohe

Corollary 2.10. If I is a proper φ-subtractive (n− 1, n)-φ-prime ideal of S
with φ ≤ φn+1, then I is (n− 1, n)-ω-prime, where n ≥ 2.

Proof. Let I be (n− 1, n)-prime. Then I is (n− 1, n)-φ-prime for each φ and
hence I is (n−1, n)−ω-prime. So, assume that I is not (n−1, n)-prime. Therefore,
by Theorem 2.7, In ⊆ φ(I) ⊆ In+1. Thus, φ(I) = Im for each m ≥ n. Hence I is
(n− 1, n)− ω-prime.

Definition 2.11. [5, Definition 1(i)] A proper ideal I of a semiring S is said
to be a strong ideal if for each a ∈ I there exists b ∈ I such that a + b = 0.

Theorem 2.12. Let S and S′ be semirings, f : S → S′ be an epimorphism
such that f(0) = 0 and I be a φ-subtractive strong ideal of S. If I is an (n− 1, n)-
φ-prime ideal of S with In * φ(I) and ker f ⊆ I, then f(I) is an (n−1, n)-φ-prime
ideal of S′.

Proof. Let I be an (n − 1, n)-φ-prime ideal of S with In * φ(I) and
a1a2 · · · an ∈ f(I) \ φ(f(I)) for some a1, a2, . . . , an ∈ S′. Since a1a2 · · · an ∈ f(I),
therefore there exists an element m ∈ I such that a1a2 · · · an = f(m). Since f is
an epimorphism and a1, a2, . . . , an ∈ S′, then there exist p1, p2, . . . , pn ∈ S such
that a1 = f(p1), a2 = f(p2), . . . , an = f(pn). As m ∈ I and I is a strong
ideal of S, there exists l ∈ I such that m + l = 0, which implies f(m + l) = 0.
This gives that f(p1p2 · · · pn + l) = 0 implies p1p2 · · · pn + l ∈ ker f ⊆ I. This
implies p1p2 · · · pn ∈ I, since I is subtractive. Since I is an (n − 1, n)-φ-prime
ideal with In * φ(I), we have that I is an (n − 1, n)-prime ideal by Theorem
2.7. Therefore, we have p1p2 · · · pi−1pi+1 · · · pn ∈ I for some i ∈ {1, 2, . . . , n}.
Thus a1a2 · · · ai−1ai+1 · · · an ∈ f(I), for some i ∈ {1, 2, . . . , n}. Hence f(I) is an
(n− 1, n)-φ-prime ideal of S′.

Definition 2.13. A semiring S is said to be cancellative, if whenever xc = yc
and cx = cy in S, then x = y.

Theorem 2.14. Let S be a cancellative semiring and x ∈ S. Let Sx be a
φ2-subtractive ideal of S. Then Sx is (n − 1, n)-φ2-prime if and only if Sx is an
(n− 1, n)-prime ideal of S.

Proof. First, suppose that Sx is (n− 1, n)-φ2-prime and a1, a2, . . . , an ∈ S are
such that a1a2 · · · an ∈ Sx. If a1a2 · · · an /∈ φ2(Sx), then a1a2 · · · an ∈ Sx \ φ2(Sx),
which gives a1a2 · · · ai−1ai+1 · · · an ∈ Sx for some i ∈ {1, 2, . . . , n}, since Sx is
(n − 1, n)-φ2-prime. Let a1a2 · · · an ∈ φ2(Sx). Also, a1 · · · an−1(an + x) ∈ Sx. If
a1 · · · an−1(an + x) /∈ φ2(Sx), then a1 · · · an−1(an + x) ∈ Sx \ φ2(Sx). This gives
a1a2 · · · ai−1ai+1 · · · an ∈ Sx for some i ∈ {1, 2, . . . , n}, since Sx is φ2-subtractive
(n − 1, n)-φ2-prime. If a1 · · · an−1(an + x) ∈ φ2(Sx), then we have a1 · · · an−1x ∈
φ2(Sx) = (Sx)2. Therefore, a1 · · · an−1x = (s1x)(s2x) = (s1s2)x2 for some s1, s2 ∈
S. This gives a1 · · · an−1 = s1s2x, as S is cancellative. Thus, a1 · · · an−1 ∈ Sx and
hence Sx is an (n− 1, n)-prime ideal of S.

The converse is obvious.
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Theorem 2.15. Let S be a cancellative semiring and a ∈ S be a non-unit.
Let 〈a〉 be a φ2-subtractive ideal of S. Then 〈a〉 is an (n − 1, n)-φ2-prime ideal if
and only if 〈a〉 is an (n− 1, n)-prime ideal (n ≥ 2).

Proof. Let 〈a〉 be an (n − 1, n)-φ2-prime ideal of S and a1a2 · · · an ∈ 〈a〉 for
some a1, a2, . . . , an ∈ S. If a1a2 · · · an /∈ 〈a〉2, then a1a2 · · · ai−1ai+1 · · · an ∈ 〈a〉 for
some i ∈ {1, 2, . . . , n}. So assume that a1a2 · · · an ∈ 〈a〉2. Also (a1 + a)a2 · · · an ∈
〈a〉. If (a1 + a)a2 · · · an /∈ 〈a〉2, then a1a2 · · · ai−1ai+1 · · · an ∈ 〈a〉, for some i ∈
{1, 2, . . . , n}, since 〈a〉 is a φ2-subtractive (n−1, n)-φ2-prime ideal of S. So assume
that (a1 + a)a2 · · · an ∈ 〈a〉2. Then aa2 · · · an ∈ 〈a〉2, as a1a2 · · · an ∈ 〈a〉2 and 〈a〉
is φ2-subtractive. Hence a2 · · · an ∈ 〈a〉, since S is cancellative. Thus, 〈a〉 is an
(n− 1, n)-prime ideal.

The converse is obvious.

Corollary 2.16. Let S be a cancellative semiring and a ∈ S be non-unit.
Let 〈a〉 be a subtractive ideal of S. Then 〈a〉 is an (n− 1, n)-weakly prime ideal if
and only if 〈a〉 is an (n− 1, n)-prime ideal (n ≥ 2).

Let S1 and S2 be commutative semirings. We know that the prime ideals of
S1×S2 have the form I1×S2 or S1× I2 where I1 is a prime ideal of S1 and I2 is a
prime ideal of S2. Define multiplication on S1×S2 as (a1, a2)(b1, b2) = (a1b1, a2b2)
for all a1, b1 ∈ S1 and a2, b2 ∈ S2. Now, we prove the following theorem.

Theorem 2.17. Let S1 and S2 be commutative semirings and I1 be an (n −
1, n)-weakly prime ideal of S1. Then I = I1 × S2 is an (n − 1, n)-φ-prime ideal of
S = S1 × S2 for each φ with φω ≤ φ ≤ φ1.

Proof. Let I1 be an (n− 1, n)-weakly prime ideal of S1. First, suppose that I1

be an (n−1, n)-prime ideal of S. Then I is also an (n−1, n)-prime ideal and hence
is an (n − 1, n)-φ-prime ideal of S for all φ. So, suppose that I1 is not (n − 1, n)-
prime. Then In

1 = 0. Therefore, we have In = 0n×S2 and hence φω(I) = {0}×S2.
Now, I \φω(I) = (I1×S2)\({0}×S2). Thus, (a1, b1)(a2, b2) · · · (an, bn) ∈ I \φω(I).
This gives a1a2 · · · an ∈ I1 \ {0}. Thus, a1a2 · · · ai−1ai+1 · · · an ∈ I1, for some i ∈
{1, 2, . . . , n} which implies (a1, b1)(a2, b2) · · · (ai−1, bi−1)(ai+1, bi+1) · · · (an, bn) ∈ I.
Hence I is an (n− 1, n)-φω-prime and hence (n− 1, n)-φ-prime.

Theorem 2.18. Let I be a proper φ-subtractive ideal of a semiring S. Suppose
that I is (n−1, n)-φ-prime with φ ≤ φn+1. Then, either I is (n−1, n)-weakly prime
or In is an idempotent.

Proof. If I is (n − 1, n)-prime, then I is (n − 1, n)-weakly prime. So, there
is nothing to prove. Now, assume that I is not (n − 1, n)-prime. Therefore, by
Theorem 2.7, In ⊆ φ(I). Since, φ ≤ φn+1, therefore In ⊆ φn+1(I) = In+1, which
gives In = In+1. Hence In = I2n. Thus, In is idempotent.
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3. (n− 1, n)-weakly prime ideals

In this section, we study the concept of (n − 1, n)-weakly prime ideals of a
commutative semiring S which is a particular case of (n− 1, n)-φ-prime ideals and
prove some results related to them.

Let I be an (n−1, n)-weakly prime ideal of a semiring S and a1, a2, . . . , an ∈ S.
Then (a1, a2, . . . , an) is an n-zero of I, if a1a2 · · · an = 0 and a1a2 · · · ai−1ai+1 · · · an

/∈ I for all i ∈ {1, 2, . . . , n} (n ≥ 2).

Theorem 3.1. Let I be a subtractive (n− 1, n)-weakly prime ideal of a semir-
ing S and (a1, a2, . . . , an) is an n-zero of I for some a1, a2, . . . , an ∈ S. Then
ai1 · · · ain−k

Ik = 0 for all k ∈ {1, 2, . . . , n} and i1, i2, . . . , in−k ∈ {1, 2, . . . , n}. In
particular, In = 0.

Proof. We prove it by induction on k. For k = 1, suppose that ai1ai2 · · · ain−1I
6= 0. Then, there exists an element x ∈ I such that ai1ai2 · · · ain−1x 6= 0. So,

0 6= ai1ai2 · · · ain−1(ain
+ x). This gives ai1ai2 · · · ain−1(ain

+ x) ∈ I \ {0}. Since
I is subtractive (n − 1, n)-weakly prime, we have a1a2 · · · ai−1ai+1 · · · an ∈ I for
some i ∈ {1, 2, . . . , n}, a contradiction. Thus ai1ai2 · · · ain−k

I = 0. Now, let
ai1 · · · ain−(k−1)I

k−1 = 0 for some k ≥ 2 and for all possible i1, i2, . . . , in−(k−1) ⊆
{1, 2, . . . , n}. Assume that ai1 · · · ain−k

Ik 6= 0. Then ai1ai2 · · · ain−k
p1p2 · · · pk 6=

0 for some p1, p2, . . . , pk ∈ I. Thus, ai1ai2 · · · ain−k
(ain−k+1 + p1)(ain−k+2 +

p2) · · · (ain + pk) ∈ I \ {0}. Consequently, a1a2 · · · ai−1ai+1 · · · an ∈ I for some
i ∈ {1, 2, . . . , n} (since I is subtractive (n − 1, n)-weakly prime), a contradiction.
Hence ai1 · · · ain−k

Ik = 0. In particular, In = 0.

Theorem 3.2. Let I be a subtractive (n−1, n)-weakly prime ideal of a semiring
S that is not an (n − 1, n)-prime ideal. If a ∈ Nil(S), then either an−1 ∈ I or
an−kIk = 0 for all k ∈ {1, 2, . . . , n− 1}.

Proof. We prove it by induction on k. Suppose k = 1. Let a ∈ Nil(S)
and an−1I 6= 0. Then there exists y ∈ I such that an−1y 6= 0 and let m be
the least positive integer such that am = 0. Then m ≥ n and 0 6= an−1y =
an−1(y + am−n+1) ∈ I. Therefore, either an−1 ∈ I or am−1 ∈ I. If an−1 ∈ I, then
there is nothing to prove. So, assume that 0 6= am−1 ∈ I. Thus, an−1 ∈ I (since
m ≥ n and I is subtractive (n − 1, n)-weakly prime). Hence for each a ∈ Nil(S),
we have an−1 ∈ I or an−1I = 0. Next, assume that vn−1 /∈ I, where v ∈ Nil(S).
Therefore vn−1I = 0. Suppose that it is true for n = k that vn−kIk = 0 for all
k ∈ {1, 2, . . . , n− 1}. Suppose that vn−kIk 6= 0. Then there exist i1, i2, . . . , ik ∈ I
such that vn−ki1i2 · · · ik 6= 0. Since v ∈ Nil(S), we have vm = 0 where m is the
least positive integer. If m < n, then vn−1 = 0 ∈ I, a contradiction. So, m ≥ n.
Now, 0 6= vn−ki1i2 · · · ik = vn−k(v+i1)(v+i2) · · · (v+ik−1)(vm−n+1+ik) ∈ I. This
gives vn−1 ∈ I or vm−1 ∈ I and hence vn−1 ∈ I, (since m ≥ n, vm−1 6= 0 and I is
an (n− 1, n)-weakly prime). Hence vn−1 ∈ I, a contradiction. Thus, vn−kIk = 0.

Theorem 3.3. Let S be a semiring and {Ii}i∈∆ be a family of subtractive
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(n− 1, n)-weakly prime ideals of S that are not (n− 1, n)-prime ideals of S. Then
I =

⋂
i∈∆ Ii is an (n− 1, n)-weakly prime ideal of S.

Proof. Let {Ii}i∈∆ be a family of (n− 1, n)-weakly prime ideals of S that are
not (n − 1, n)-prime ideals of S and I =

⋂
i∈∆ Ii. Therefore by Corollary 2.9, we

have
√

Ii =
√

0 for all i ∈ ∆. This gives
⋂

i∈∆

√
Ii =

√
0. Thus, we have

√
I =

√
0,

since
⋂

i∈∆

√
Ii =

√
I. Next, let a1a2 · · · an ∈ I \ {0} for some a1, a2, . . . , an ∈ S.

If a1a2 · · · an−1 ∈ I, then there is nothing to prove. So, let a1a2 · · · an−1 /∈ I. Then
there exists i ∈ ∆ such that a1a2 · · · an−1 /∈ Ii and we also have a1a2 · · · an ∈
Ii \ {0}. This gives a1a2 · · · ai−1ai+1 · · · an ∈ Ii for some i ∈ {1, 2, . . . , n − 1},
since Ii is an (n − 1, n)-weakly prime ideal of S and a1a2 · · · an−1 /∈ Ii. Thus,
a1a2 · · · ai−1ai+1 · · · an ∈ Ii ⊆

√
Ii =

√
0 =

√
I for some i ∈ {1, 2, . . . , n−1}. Hence

I is an (n− 1, n)-weakly prime ideal of S.

Theorem 3.4. Let S = S1×S2×· · ·×Sn, where Si is a commutative semiring
for all i ∈ {1, 2, . . . , n}. If I is an (n − 1, n)-weakly prime ideal of S, then either
I = 0 or I = I1 × I2 × . . . × Ii−1 × Si × Ii+1 × . . . × In for some i ∈ {1, 2, . . . , n}
and if Ij 6= Sj for j 6= i, then Ij is an (n− 1, n)-prime ideal in Sj.

Proof. Let I = I1 × I2 × · · · × In be an (n− 1, n)-weakly prime ideal of S and
let I 6= 0. Then (0, 0, . . . , 0) 6= (a1, a2, . . . , an) ∈ I. Therefore, (a1, a2, . . . , an) =
(a1, 1, . . . , 1)(1, a2, . . . , 1) · · · (1, 1, . . . , an) ∈ I. Since I is (n− 1, n)-weakly prime,
we have (a1, a2, . . . ai−1, 1, ai+1, . . . , an) ∈ I for some i ∈ {1, 2, . . . , n}. Thus
(0, . . . , 1, 0, . . . , 0) ∈ I. Hence I = I1 × I2 × · · · × Ii−1 × Si × Ii+1 × · · · × In.
Next, suppose Ij 6= Sj for i 6= j. Let i < j and x1x2 · · ·xn ∈ Ij . Then

0 6= (0, 0, . . . , 0, 1, . . . , x1x2 · · ·xn, 0 . . . , 0)

= (0, 0, . . . , 1, 0, . . . , 0, x1, 0, 0 . . . , 0)(0, 0, . . . , 1, 0, . . . , 0, x2, 0, . . . , 0)

· · · (0, 0, . . . , 1, 0, . . . , 0, 0, xn, 0, . . . , 0) ∈ I.

Thus, we have (0, 0, . . . , 0, 1, 0, . . . , x1x2 · · ·xl−1xl+1 · · ·xn, 0, . . . , 0) ∈ I for some
l ∈ {1, 2, . . . , n}. Hence x1x2 · · ·xl−1xl+1 · · ·xn ∈ Ij . Consequently, Ij is an (n −
1, n)-prime ideal of Sj . The other cases for j < i are similar.

A semiring S is said to be a local semiring denoted by (S, M) if and only if S
has a unique maximal subractive ideal, say M . Darani [9] proved that the semiring
S is a local semiring if and only if the set of non-semi-unit elements of S forms
a subtractive ideal. It is also proved that if S is a local semiring then the unique
maximal subtractive ideal of S is precisely the set of non-semi-units of S.

Theorem 3.5. Let (S, M) be a local semiring with Mn = 0. Then every
proper subtractive ideal of S is (n− 1, n)-weakly prime.

Proof. Suppose that Mn = 0, and let I be a proper subtractive ideal of
S and a1, a2, . . . , an ∈ S. Suppose that 0 6= a1a2 · · · an ∈ I. Since (S, M)
is a local semiring then we have ai ∈ M for some i ∈ {1, 2, . . . , n}. Since
each ai, i ∈ {1, 2, . . . , n} does not belong to M , at the same time because in
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this case a1a2 · · · an ∈ Mn = 0, this gives a contradiction. So ai for some
i ∈ {1, 2, . . . , n} must be a semi-unit. Assume that ai is a semi-unit. Then there
exist r, s ∈ S such that 1 + rai = sai. So a1a2 · · · ai−1ai+1 · · · an + ra1a2 · · · an =
(1 + rai)a1a2 · · · ai−1ai+1 · · · an = sa1a2 · · · an ∈ I and ra1a2 · · · an ∈ I imply that
a1a2 · · · ai−1ai+1 · · · an ∈ I for some i ∈ {1, 2, . . . , n}. Thus I is an (n−1, n)-weakly
prime.

Definition 3.6. [1, Definition (4)] An ideal I of a semiring S is called a
Q−ideal (partitioning ideal) if there exists a subset Q of S such that

(i) S = ∪{q + I : q ∈ Q}
(ii) If q1, q2 ∈ Q, then (q1 + I) ∩ (q2 + I) 6= ∅ ⇔ q1 = q2.

Let I be a Q-ideal of a semiring S. Then S/I(Q) = {q + I : q ∈ Q} forms a
semiring under the following addition ‘⊕’ and multiplication ‘¯’, (q1+I)⊕(q2+I) =
q3 +I where q3 ∈ Q is unique such that q1 +q2 +I ⊆ q3 +I, and (q1 +I)¯(q2 +I) =
q4 + I where q4 ∈ Q is unique such that q1q2 + I ⊆ q4 + I. This semiring S/I(Q) is
called the quotient semiring of S by I and denoted by (S/I(Q),⊕,¯) or just S/I(Q).
By definition of a Q-ideal, there exists a unique q0 ∈ Q such that 0 + I ⊆ q0 + I.
Then q0 + I is a zero element of S/I(Q). Clearly, if S is commutative then so is
S/I(Q).

Theorem 3.7. Let S be a semiring, I be a Q−ideal of S and P a subtractive
ideal of S such that I ⊆ P . Then P is an (n− 1, n)-prime ideal of S if and only if
P/I(Q∩P ) is an (n− 1, n)-prime ideal of S/I(Q).

Proof. Let P be an (n − 1, n)-prime ideal of S. Suppose that q1 + I, q2 +
I, . . . , qn + I ∈ S/I(Q) are such that (q1 + I)¯ (q2 + I)¯ · · · ¯ (qn + I) = qr + I ∈
P/I(Q∩P ) where qr ∈ Q∩P is a unique element such that q1q2 · · · qn + I ⊆ qr + I ∈
P/I(Q∩P ). So q1q2 · · · qn = qr + i, for some i ∈ I. Since P is a subtractive (n−1, n)-
prime ideal of S and I ⊆ P , therefore q1q2 · · · qi−1qi+1 · · · qn ∈ P for some i ∈
{1, 2, . . . , n}. Now (q1+I)¯(q2+I)¯· · ·¯(qi−1+I)¯(qi+1+I)¯· · ·¯(qn+I) = i1+I
where i1 ∈ Q is a unique element such that q1q2 · · · qi−1qi+1 · · · qn + I ⊆ i1 + I. So
i1 + f = q1q2 · · · qi−1qi+1 · · · qn + e for some e, f ∈ I. Since P is a subtractive ideal
of S and I ⊆ P , we have i1 ∈ P , therefore i1 ∈ Q ∩ P . Hence P/I(Q∩P ) is an
(n− 1, n)-prime ideal of S/I(Q).

Conversely, let P/I(Q∩P ) is an (n−1, n)-prime ideal of S/I(Q). Let a1a2 · · · an ∈
P for some a1, a2, . . . , an ∈ S. Since I is a Q−ideal of S, therefore there exist
q1, q2, . . . , qn ∈ Q such that a1 ∈ q1 + I, a2 ∈ q2 + I, . . . , an ∈ qn + I and
a1a2 · · · an ∈ (q1 + I) ¯ (q2 + I) ¯ · · · ¯ (qn + I) = qk + I, for some qk ∈ Q. So,
a1a2 · · · an = qk + i2 ∈ P for some i2 ∈ I. Since P is a subtractive ideal of S and
I ⊆ P , we have qk ∈ P . So, (q1 + I)¯ (q2 + I)¯ · · ·¯ (qn + I) = qk + I ∈ P/I(Q∩P )

which gives (q1+I)¯(q2+I)¯· · ·¯(qi−1+I)¯(qi+1+I)¯· · ·¯(qn+I) ∈ P/I(Q∩P )

for some i ∈ {1, 2, . . . , n}, since P/I(Q∩P ) is an (n − 1, n)-prime ideal of S/I(Q).
Now for some i ∈ {1, 2, . . . , n}, we have (q1 + I) ¯ (q2 + I) ¯ · · · ¯ (qi−1 + I) ¯
(qi+1 + I) ¯ · · · ¯ (qn + I) ∈ P/I(Q∩P ). Then there exists qh ∈ Q ∩ P such that
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a1a2 · · · ai−1ai+1 · · · an ∈ (q1+I)¯(q2+I)¯· · ·¯(qi−1+I)¯(qi+1+I)¯· · ·¯(qn+I) =
qh + I. This gives a1a2 · · · ai−1ai+1 · · · an = qh + i3 for some i3 ∈ I. This implies
a1a2 · · · ai−1ai+1 · · · an ∈ P for some i ∈ {1, 2, . . . , n}. Thus P is an (n−1, n)-prime
ideal of S.

Theorem 3.8. Let S be a semiring, I a Q−ideal of S and P a subtractive
ideal of S such that I ⊆ P . Then
(i) if P is an (n− 1, n)-weakly prime ideal of S, then P/I(Q∩P ) is an (n− 1, n)-

weakly prime ideal of S/I(Q);
(ii) if I and P/I(Q∩P ) are (n − 1, n)-weakly prime ideals of S and S/I(Q) respec-

tively, then P is an (n− 1, n)-weakly prime ideal of S.

Proof. (i) If (q1 + I)¯ (q2 + I)¯ · · · ¯ (qn + I) 6= 0 in S/IQ, then q1q2 · · · qn 6=
0 in S and hence the proof follows from the above theorem.

(ii) Let a1, a2, . . . , an ∈ S be such that 0 6= a1a2 · · · an ∈ P . If a1a2 · · · an ∈ I
then a1a2 · · · ai−1ai+1 · · · an ∈ I ⊆ P for some i ∈ {1, 2, . . . , n}, since I is an
(n − 1, n)-weakly prime ideal of S. So, assume that a1a2 · · · an /∈ I. Then there
are elements q1, q2, · · · qn ∈ Q such that a1 ∈ q1 + I, a2 ∈ q2 + I, . . . , an ∈ qn + I.
Therefore for some i1, i2, . . . , in ∈ I, a1 = q1+i1, a2 = q2+i2, . . . , an = qn +in. As
a1a2 · · · an = q1q2 · · · qn + q1q2 · · · qn−1in + · · ·+ qni1i2 · · · in−1 + i1i2 · · · in ∈ P and
since P is subtractive, we have q1q2 · · · qn ∈ P . Consider, (q1 + I)¯ (q2 + I)¯ · · ·¯
(qn + I) = qk + I where qk ∈ Q is the unique element such that q1q2 · · · qn + I ⊆
qk + I. Since P is subtractive, we have qk ∈ P ∩ Q. Hence q1q2 · · · qn + I ⊆
qk + I ∈ P/IQ∩P , that is, (q1 + I) ¯ (q2 + I) ¯ · · · ¯ (qn + I) ∈ P/IQ∩P . Let
q ∈ Q be the unique element such that q + I is the zero element in S/IQ. If
(q1 + I)¯ (q2 + I)¯ · · · ¯ (qn + I) = 0S/IQ

= q + I, then there exist r, s ∈ I such
that q1q2 · · · qn + r = q + s ∈ I. Therefore, q1q2 · · · qn ∈ I, since I is a Q-ideal of
S therefore it is subtractive by [15, Corollary 8.23]. This gives a1a2 · · · an ∈ I, a
contradiction. Hence, 0S/IQ

6= (q1 + I)¯ (q2 + I)¯ · · · ¯ (qn + I) ∈ P/IQ∩P . This
gives (q1 + I)¯ (q2 + I) · · · ¯ (qi−1 + I)¯ (qi+1 + I)¯ · · · ¯ (qn + I) ∈ P/IQ∩P for
some i ∈ {1, 2, . . . , n}, since P/IQ∩P is an (n − 1, n)-weakly prime ideal of S/IQ.
Thus, we have a1a2 · · · ai−1ai+1 · · · an ∈ P for some i ∈ {1, 2, . . . , n}. Hence, P is
an (n− 1, n)-weakly prime ideal of S.
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