ON ($n-1, n$)- ϕ-PRIME IDEALS IN SEMIRINGS

Manish Kant Dubey and Poonam Sarohe

Abstract

Let S be a commutative semiring and $T(S)$ be the set of all ideals of S. Let $\phi: T(S) \rightarrow T(S) \cup\{\emptyset\}$ be a function. A proper ideal I of a semiring S is called an $(n-1, n)$ - ϕ-prime ideal of S if $a_{1} a_{2} \cdots a_{n} \in I \backslash \phi(I), a_{1}, a_{2}, \ldots, a_{n} \in S$ implies that $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I$ for some $i \in\{1,2, \ldots, n\}$. In this paper, we prove several results concerning $(n-1, n)$ - ϕ-prime ideals in a commutative semiring S with non-zero identity connected with those in commutative ring theory.

1. Introduction

Anderson and Bataineh [3] have introduced the concept of ϕ-prime ideals in a commutative ring as a generalization of weakly prime ideals in a commutative ring introduced by Anderson and Smith [4]. After that several authors [2,6-11,16], etc. explored this concept in different ways either in commutative ring or semiring theory. Ebrahimpour and Nekooei [13] generalized the concept of ϕ-prime ideals in terms of $(n-1, n)$ - ϕ-prime ideals in commutative rings with non-zero identity and extended several results connected to [3]. In this paper, we introduce the notion of $(n-1, n)$ - ϕ-prime ideals in a commutative semiring and prove several results connected with ring theory. Most of the results are inspired by $[3,9,13,14]$.

A commutative semiring is a commutative semigroup (S, \cdot) and a commutative monoid $\left(S,+, 0_{S}\right)$ in which the multiplication is distributive with respect to the addition both from the left and from the right and 0_{S} is the additive identity of S and also $0_{S} \cdot x=x \cdot 0_{S}=0_{S}$ for all $x \in S$. A non-empty subset I of a semiring S is called an ideal of S if $a, b \in I$ and $s \in S$ imply $a+b \in I$ and $s a, a s \in I$. An ideal I of a semiring S is said to be proper if $I \neq S$. An ideal I of a semiring S is called subtractive (also, a k-ideal) if $a, a+b \in I, b \in S$ imply $b \in I$. An ideal I of a semiring S is called prime (weakly prime, almost prime, n-almost prime) if $a b \in I$ (respectively, $a b \in I \backslash\{0\}, a b \in I \backslash I^{2}, a b \in I \backslash I^{n}$) implies that either $a \in I$ or $b \in I$. A non-zero element $a \in S$ is said to be a semi-unit in S if there exist $r, s \in S$ such that $1+r a=s a$. A proper ideal I of a semiring S is called

[^0]2-absorbing (respectively, weakly 2 -absorbing) if $a b c \in I$ (respectively, $0 \neq a b c \in I$) implies $a b \in I$ or $a c \in I$ or $b c \in I$. For the rest of the concepts and terminologies used in semiring theory, we refer to [15]. Throughout this paper, S will always denote a commutative semiring with identity $1 \neq 0$.

2. $(n-1, n)$ - ϕ-prime ideals

In this section, we introduce the notion of $(n-1, n)$ - ϕ-prime ideals of a semiring S and analyse some properties related to them.

Definition 2.1. Let S be a semiring and $T(S)$ be the set of all ideals of S. Let $\phi: T(S) \rightarrow T(S) \cup\{\emptyset\}$ be a function. A proper ideal I of a semiring S is called an $(n-1, n)$ - ϕ-prime ideal of S, if $a_{1} a_{2} \cdots a_{n} \in I \backslash \phi(I), a_{1}, a_{2}, \ldots, a_{n} \in S$ implies that $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I$ for some $i \in\{1,2, \ldots, n\}$.

Note that for $n \geq 2,(n-1, n)$-prime ideal denotes $(n-1)$-absorbing ideal I (analogous to [2]) of S, that is, a proper ideal I of S is called an n-absorbing ideal if whenever $a_{1} a_{2} \cdots a_{n+1} \in I$ for $a_{1}, a_{2}, \ldots, a_{n+1} \in S$, then there are n of the a_{i} 's whose product is in I. Thus, a (1,2)-prime ideal is just a prime ideal, a $(2,3)$-prime ideal is a 2 -absorbing ideal and an $(n-1, n)$-prime ideal is an $(n-1)$ absorbing ideal of S. Similarly, a proper ideal I of a semiring S is called an $(n-1, n)$-weakly prime ideal of S if $a_{1} a_{2} \cdots a_{n} \in I \backslash\{0\}, a_{1}, a_{2}, \ldots, a_{n} \in S$ implies $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I$ for some $i \in\{1,2, \ldots, n\}$. It is clear that every $(n-1, n)-$ prime ideal is an $(n-1, n)$-weakly prime ideal of a semiring S but the converse need not be true. For example, by definition $\{0\}$ is an $(n-1, n)$-weakly prime ideal but it is not an $(n-1, n)$-prime ideal of S. Some non-trivial examples of ($n-1, n$)-weakly prime ideals that are not $(n-1, n)$-prime are given as follows.
(i). Let $S=Z_{2^{n}}(n \geq 2)$, where Z is the set of all positive integers. Consider $I=\left\{0,2^{n-1}\right\}$. Clearly, I is an ideal of S. Now, let $S_{1}=S \times I$ and $N=\left\{(0,0),\left(0,2^{n-1}\right)\right\}$. Then N is a non-zero $(n-1, n)$-weakly prime ideal of S_{1} but it is not an $(n-1, n)$-prime ideal of S_{1}, since $(2,0)^{n} \in N$ but $(2,0)^{n-1} \notin N$.
(ii). Let $S=Z_{2^{n} p}(n \geq 2)$, where Z is the set of all positive integers and p is any prime number. Let $I=\left\{0,2^{n-1} p\right\}$. Let $S_{1}=S \times I$ and $N=\left\{(0,0),\left(0,2^{n-1} p\right)\right\}$. Clearly, N is a non-zero $(n-1, n)$-weakly prime ideal of S_{1} but it is not an $(n-1, n)$-prime ideal of S_{1}, since $(2,0)^{n}(p, 0) \in N$ but neither $(2,0)^{n} \in N$ nor $(2,0)^{n-1}(p, 0) \in N$.

Similarly, an $(n-1, n)$ - ϕ-prime ideal I of S can be elucidated as follows:
If $\phi_{0}(I)=\{0\}$, then an $(n-1, n)$ - ϕ_{0}-prime ideal is called an $(n-1, n)$-weakly prime ideal. Similarly, if $\phi_{2}(I)=I^{2}$, then an $(n-1, n)-\phi_{2}$-prime ideal is called an ($n-1, n$)-almost prime ideal, $(1,2)$ - ϕ_{0}-prime ideal means weakly prime ideal and $(2,3)-\phi_{0}$-prime ideal means weakly 2 -absorbing ideal of a commutative semiring.

Since $I \backslash \phi(I)=I \backslash(I \cap \phi(I))$, so without loss of generality, we assume, throughout the paper that $\phi(I) \subseteq I$. Let S be a semiring and $T(S)$ be the set of all ideals of S. Define the following functions $\phi_{\alpha}: T(S) \rightarrow T(S) \cup\{\emptyset\}$ and their corresponding ϕ_{α}-prime ideals as follows: $\phi_{\emptyset}(I)=\{\emptyset\} ; \phi_{0}(I)=\{0\} ; \phi_{1}(I)=I$;
$\phi_{2}(I)=I^{2} ; \phi_{n}(I)=I^{n}, n \geq 2 ; \phi_{\omega}(I)=\bigcap_{n=1}^{\infty} I^{n}$ for all $I \in T(S)$. Clearly, ϕ_{\emptyset}, ϕ_{0}, ϕ_{2} and ϕ_{n} are prime, weakly prime, almost prime and n-almost prime ideals respectively.

Definition 2.2. [12, Definition 2.2] Let S be a semiring and $\phi: T(S) \rightarrow$ $T(S) \cup\{\emptyset\}$ be a function, where $T(S)$ is the set of all ideals of S and let I be an ideal of S. Then I is said to be a ϕ-subtractive ideal of S if I and $\phi(I)$ are subtractive ideals of S. Similarly, we define the following functions $\phi_{\alpha}: T(S) \rightarrow T(S) \cup\{\emptyset\}$ and their corresponding ϕ_{α}-prime ideals such that $\phi_{\emptyset}(I)=\{\emptyset\} ; \phi_{0}(I)=\{0\} ; \phi_{1}(I)=I$; $\phi_{2}(I)=I^{2} ; \phi_{n}(I)=I^{n}, n \geq 2$ for all $I \in T(S)$. Then I is said to be a ϕ_{i}-subtractive ideal of S if I and $\phi_{i}(I)$ are subtractive ideals of S, where $2 \leq i \leq n$.

Several examples have been studied in [12]. For the sake of completeness, we consider the set $S=Z_{8}=\{0,1,2,3,4,5,6,7\}$. Then S forms a semiring under addition and multiplication modulo 8 . If we take the set $I=\{0,2,4,6\}$, then it is easy to check that I and $\phi_{i}(I)$ (as defined above) are subtractive ideals of S and therefore I is a ϕ_{i}-subtractive ideal of S, where $2 \leq i \leq n$.

Proposition 2.3. Let S be a semiring and I be an ideal of S. Let $x \in S$. Then $(I: x)$ and $(0: x)$ are also subtractive ideals of S, where $(I: x)=\{r \in S: r x \in I\}$ and $(0: x)=\{r \in S: r x=0\}$.

Proof. The proof is straightforward.
Result 2.4. [16] If I and J are two subtractive ideals of S, then $I \cup J$ is a subtractive ideal of S if and only if $I \cup J=I$ or $I \cup J=J$.

THEOREM 2.5. Let $\phi: T(S) \rightarrow T(S) \cup\{\emptyset\}$ be a function and I be a subtractive proper ideal of S. Then the following statements are equivalent:
(i) I is $(n-1, n)$ - ϕ-prime;
(ii) for $a_{1} a_{2} \cdots a_{n-1} \in S \backslash I$, $\left(I: a_{1} a_{2} \cdots a_{n-1}\right)=$
$\bigcup_{i=1}^{n-1}\left(I: a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1}\right) \cup\left(\phi(I): a_{1} a_{2} \cdots a_{n-1}\right)$.
Proof. (i) \Rightarrow (ii) Let $a_{1} a_{2} \cdots a_{n-1} \in S \backslash I$ and let $x \in\left(I: a_{1} a_{2} \cdots a_{n-1}\right)$. Then $a_{1} a_{2} \cdots a_{n-1} x \in I$. If $a_{1} a_{2} \cdots a_{n-1} x \notin \phi(I)$, then $a_{1} a_{2} \cdots a_{n-1} x \in I \backslash \phi(I)$. Since I is $(n-1, n)$ - ϕ-prime, then we have $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1} x \in I$ for some $i \in\{1,2, \ldots, n-1\}$. Hence $x \in\left(I: a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1}\right)$. If $a_{1} a_{2} \cdots a_{n-1} x \in \phi(I)$, then $x \in\left(\phi(I): a_{1} a_{2} \cdots a_{n-1}\right)$. Thus, $\left(I: a_{1} a_{2} \cdots a_{n-1}\right) \subseteq$ $\bigcup_{i=1}^{n-1}\left(I: a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1}\right) \cup\left(\phi(I): a_{1} a_{2} \cdots a_{n-1}\right)$. Clearly, $\bigcup_{i=1}^{n-1}(I:$ $\left.a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1}\right) \cup\left(\phi(I): a_{1} a_{2} \cdots a_{n-1}\right) \subseteq\left(I: a_{1} a_{2} \cdots a_{n-1}\right)$, since $\phi(I) \subseteq$ I. Therefore, $\left(I: a_{1} a_{2} \cdots a_{n-1}\right)=\bigcup_{i=1}^{n-1}\left(I: a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1}\right) \cup(\phi(I):$ $\left.a_{1} a_{2} \cdots a_{n-1}\right)$.
(ii) \Rightarrow (i) Let $a_{1} a_{2} \cdots a_{n} \in I \backslash \phi(I)$. If $a_{1} a_{2} \cdots a_{n-1} \in I$, then we are done. So assume that $a_{1} a_{2} \cdots a_{n-1} \notin I$. Therefore, we have $\left(I: a_{1} a_{2} \cdots a_{n-1}\right)=$ $\bigcup_{i=1}^{n-1}\left(I: a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1}\right) \cup\left(\phi(I): a_{1} a_{2} \cdots a_{n-1}\right)$. Since $a_{1} a_{2} \cdots a_{n} \in I$, we have $a_{n} \in\left(I: a_{1} a_{2} \cdots a_{n-1}\right)$. Also $a_{n} \notin\left(\phi(I): a_{1} a_{2} \cdots a_{n-1}\right)$. Therefore, (I :
$\left.a_{1} a_{2} \cdots a_{n-1}\right) \neq\left(\phi(I): a_{1} a_{2} \cdots a_{n-1}\right)$. Thus $a_{n} \in\left(I: a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1}\right)$ for some $i \in\{1,2, \ldots, n-1\}$. Hence $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1} a_{n} \in I$ gives I is $(n-1, n)$ - ϕ-prime.

Corollary 2.6. Let I be a proper subtractive ideal of S. Then the following statements are equivalent:
(i) I is $(n-1, n)$-weakly prime;
(ii) for $a_{1} a_{2} \cdots a_{n-1} \in S \backslash I,\left(I: a_{1} a_{2} \cdots a_{n-1}\right)=$
$\bigcup_{i=1}^{n-1}\left(I: a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n-1}\right) \cup\left(0: a_{1} a_{2} \cdots a_{n-1}\right)$.
Theorem 2.7. Let S be a semiring, I be a proper ϕ-subtractive ideal of S and $\phi: T(S) \rightarrow T(S) \cup\{\emptyset\}$ be a function. If I is an $(n-1, n)$ - ϕ-prime ideal of S with $I^{n} \nsubseteq \phi(I)$, then I is an $(n-1, n)$-prime ideal of S.

Proof. Let I be an $(n-1, n)$ - ϕ-prime ideal of S with $I^{n} \nsubseteq \phi(I)$ and let $a_{1} a_{2} \cdots a_{n} \in I$ for some $a_{1}, a_{2}, \ldots, a_{n} \in S$. If $a_{1} a_{2} \cdots a_{n} \notin \phi(I)$, then $a_{1} a_{2} \cdots a_{n} \in$ $I \backslash \phi(I)$, which gives $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I$ for some $i \in\{1,2, \ldots, n\}$, since I is an $(n-1, n)$ - ϕ-prime ideal of S. So assume that $a_{1} a_{2} \cdots a_{n} \in \phi(I)$. First, suppose that $a_{1} a_{2} \cdots a_{n-m} I^{m} \nsubseteq \phi(I)$ for all $m \in\{1,2, \ldots, n-1\}$. Therefore there exists $i_{1}, i_{2}, \ldots, i_{m} \in I$ such that $a_{1} a_{2} \cdots a_{n-m} i_{1} i_{2} \cdots i_{m} \notin \phi(I)$. Then $a_{1} a_{2} \cdots a_{n-m}\left(a_{n-m+1}+i_{1}\right)\left(a_{n-m+2}+i_{2}\right) \cdots\left(a_{n}+i_{m}\right) \in I \backslash \phi(I)$, since I is a ϕ-subtractive ideal of S. So $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I$, since I is ϕ-subtractive ($n-1, n$)- ϕ-prime ideal. Now, suppose that $a_{1} a_{2} \cdots a_{n-m} I^{m} \subseteq \phi(I)$ for all $m \in\{1,2, \ldots, n-1\}$. Similarly, we can assume that for all $l_{1}, l_{2}, \ldots, l_{n-m}$ from $\{1,2, \ldots, n\}, a_{l_{1}} a_{l_{2}} \cdots a_{l_{n}-m} I^{m} \subseteq \phi(I), 1 \leq m \leq n-1$. Since $I^{n} \nsubseteq$ $\phi(I)$, there exist $m_{1}, m_{2}, \ldots, m_{n} \in I$ such that $m_{1} m_{2} \cdots m_{n} \notin \phi(I)$. Then $\left(a_{1}+m_{1}\right)\left(a_{2}+m_{2}\right) \cdots\left(a_{n}+m_{n}\right) \in I \backslash \phi(I)$, since I is ϕ-subtractive. Thus, $\left(a_{1}+m_{1}\right)\left(a_{2}+m_{2}\right) \cdots\left(a_{i-1}+m_{i-1}\right)\left(a_{i+1}+m_{i+1}\right) \cdots\left(a_{n}+m_{n}\right) \in I$ for some $i \in\{1,2, \ldots, n\}$. Therefore, $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I$, since I is a ϕ-subtractive $(n-1, n)$ - ϕ-prime ideal. Hence I is an $(n-1, n)$-prime ideal of S.

Corollary 2.8. Let S be a semiring and I be a proper subtractive ideal of S. If I is an $(n-1, n)$-weakly prime ideal of S that is not an $(n-1, n)$-prime ideal of S, then $I^{n}=0$.

Corollary 2.9. Let S be a semiring and I be a proper subtractive ideal of S. If I is an $(n-1, n)$-weakly prime ideal of S that is not an $(n-1, n)$-prime ideal of S, then $\sqrt{I}=\sqrt{0}$.

Proof. Clearly, $\sqrt{0} \subseteq \sqrt{I}$. Also by Corollary 2.8 , we have $I^{n}=0$, which gives $I=\sqrt{0}$ and hence $\sqrt{I} \subseteq \sqrt{0}$. Thus we have $\sqrt{I}=\sqrt{0}$.

If I is a proper ideal of a semiring S such that $I^{n}=\{0\}$, then it need not be an $(n-1, n)$-weakly prime ideal of $S(n \geq 2)$. For example, let $S=Z_{2^{n+1} 3}$ be a semiring, where Z is the set of positive integers. If we take an ideal $I=\left\{0,2^{n} 3\right\}$, then $I^{n}=\{0\}$ but it is not an $(n-1, n)$-weakly prime ideal of S, since $0 \neq 2^{n} 3 \in I$ but neither $2^{n} \in I$ nor $2^{n-1} 3 \in I$.

Corollary 2.10. If I is a proper ϕ-subtractive $(n-1, n)$ - ϕ-prime ideal of S with $\phi \leq \phi_{n+1}$, then I is $(n-1, n)$ - ω-prime, where $n \geq 2$.

Proof. Let I be $(n-1, n)$-prime. Then I is $(n-1, n)$ - ϕ-prime for each ϕ and hence I is $(n-1, n)-\omega$-prime. So, assume that I is not $(n-1, n)$-prime. Therefore, by Theorem 2.7, $I^{n} \subseteq \phi(I) \subseteq I^{n+1}$. Thus, $\phi(I)=I^{m}$ for each $m \geq n$. Hence I is $(n-1, n)-\omega$-prime.

Definition 2.11. [5, Definition 1(i)] A proper ideal I of a semiring S is said to be a strong ideal if for each $a \in I$ there exists $b \in I$ such that $a+b=0$.

THEOREM 2.12. Let S and S^{\prime} be semirings, $f: S \rightarrow S^{\prime}$ be an epimorphism such that $f(0)=0$ and I be a ϕ-subtractive strong ideal of S. If I is an $(n-1, n)$ -ϕ-prime ideal of S with $I^{n} \nsubseteq \phi(I)$ and ker $f \subseteq I$, then $f(I)$ is an $(n-1, n)$ - ϕ-prime ideal of S^{\prime}.

Proof. Let I be an $(n-1, n)$ - ϕ-prime ideal of S with $I^{n} \nsubseteq \phi(I)$ and $a_{1} a_{2} \cdots a_{n} \in f(I) \backslash \phi(f(I))$ for some $a_{1}, a_{2}, \ldots, a_{n} \in S^{\prime}$. Since $a_{1} a_{2} \cdots a_{n} \in f(I)$, therefore there exists an element $m \in I$ such that $a_{1} a_{2} \cdots a_{n}=f(m)$. Since f is an epimorphism and $a_{1}, a_{2}, \ldots, a_{n} \in S^{\prime}$, then there exist $p_{1}, p_{2}, \ldots, p_{n} \in S$ such that $a_{1}=f\left(p_{1}\right), a_{2}=f\left(p_{2}\right), \ldots, a_{n}=f\left(p_{n}\right)$. As $m \in I$ and I is a strong ideal of S, there exists $l \in I$ such that $m+l=0$, which implies $f(m+l)=0$. This gives that $f\left(p_{1} p_{2} \cdots p_{n}+l\right)=0$ implies $p_{1} p_{2} \cdots p_{n}+l \in \operatorname{ker} f \subseteq I$. This implies $p_{1} p_{2} \cdots p_{n} \in I$, since I is subtractive. Since I is an $(n-1, n)-\phi$-prime ideal with $I^{n} \nsubseteq \phi(I)$, we have that I is an $(n-1, n)$-prime ideal by Theorem 2.7. Therefore, we have $p_{1} p_{2} \cdots p_{i-1} p_{i+1} \cdots p_{n} \in I$ for some $i \in\{1,2, \ldots, n\}$. Thus $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in f(I)$, for some $i \in\{1,2, \ldots, n\}$. Hence $f(I)$ is an ($n-1, n$)- ϕ-prime ideal of S^{\prime}.

Definition 2.13. A semiring S is said to be cancellative, if whenever $x c=y c$ and $c x=c y$ in S, then $x=y$.

Theorem 2.14. Let S be a cancellative semiring and $x \in S$. Let $S x$ be a ϕ_{2}-subtractive ideal of S. Then $S x$ is $(n-1, n)-\phi_{2}$-prime if and only if $S x$ is an $(n-1, n)$-prime ideal of S.

Proof. First, suppose that $S x$ is $(n-1, n)$ - ϕ_{2}-prime and $a_{1}, a_{2}, \ldots, a_{n} \in S$ are such that $a_{1} a_{2} \cdots a_{n} \in S x$. If $a_{1} a_{2} \cdots a_{n} \notin \phi_{2}(S x)$, then $a_{1} a_{2} \cdots a_{n} \in S x \backslash \phi_{2}(S x)$, which gives $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in S x$ for some $i \in\{1,2, \ldots, n\}$, since $S x$ is $(n-1, n)-\phi_{2}$-prime. Let $a_{1} a_{2} \cdots a_{n} \in \phi_{2}(S x)$. Also, $a_{1} \cdots a_{n-1}\left(a_{n}+x\right) \in S x$. If $a_{1} \cdots a_{n-1}\left(a_{n}+x\right) \notin \phi_{2}(S x)$, then $a_{1} \cdots a_{n-1}\left(a_{n}+x\right) \in S x \backslash \phi_{2}(S x)$. This gives $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in S x$ for some $i \in\{1,2, \ldots, n\}$, since $S x$ is ϕ_{2}-subtractive $(n-1, n)-\phi_{2}$-prime. If $a_{1} \cdots a_{n-1}\left(a_{n}+x\right) \in \phi_{2}(S x)$, then we have $a_{1} \cdots a_{n-1} x \in$ $\phi_{2}(S x)=(S x)^{2}$. Therefore, $a_{1} \cdots a_{n-1} x=\left(s_{1} x\right)\left(s_{2} x\right)=\left(s_{1} s_{2}\right) x^{2}$ for some $s_{1}, s_{2} \in$ S. This gives $a_{1} \cdots a_{n-1}=s_{1} s_{2} x$, as S is cancellative. Thus, $a_{1} \cdots a_{n-1} \in S x$ and hence $S x$ is an $(n-1, n)$-prime ideal of S.

The converse is obvious.

THEOREM 2.15. Let S be a cancellative semiring and $a \in S$ be a non-unit. Let $\langle a\rangle$ be a ϕ_{2}-subtractive ideal of S. Then $\langle a\rangle$ is an $(n-1, n)-\phi_{2}$-prime ideal if and only if $\langle a\rangle$ is an $(n-1, n)$-prime ideal $(n \geq 2)$.

Proof. Let $\langle a\rangle$ be an $(n-1, n)-\phi_{2}$-prime ideal of S and $a_{1} a_{2} \cdots a_{n} \in\langle a\rangle$ for some $a_{1}, a_{2}, \ldots, a_{n} \in S$. If $a_{1} a_{2} \cdots a_{n} \notin\langle a\rangle^{2}$, then $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in\langle a\rangle$ for some $i \in\{1,2, \ldots, n\}$. So assume that $a_{1} a_{2} \cdots a_{n} \in\langle a\rangle^{2}$. Also $\left(a_{1}+a\right) a_{2} \cdots a_{n} \in$ $\langle a\rangle$. If $\left(a_{1}+a\right) a_{2} \cdots a_{n} \notin\langle a\rangle^{2}$, then $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in\langle a\rangle$, for some $i \in$ $\{1,2, \ldots, n\}$, since $\langle a\rangle$ is a ϕ_{2}-subtractive $(n-1, n)$ - ϕ_{2}-prime ideal of S. So assume that $\left(a_{1}+a\right) a_{2} \cdots a_{n} \in\langle a\rangle^{2}$. Then $a a_{2} \cdots a_{n} \in\langle a\rangle^{2}$, as $a_{1} a_{2} \cdots a_{n} \in\langle a\rangle^{2}$ and $\langle a\rangle$ is ϕ_{2}-subtractive. Hence $a_{2} \cdots a_{n} \in\langle a\rangle$, since S is cancellative. Thus, $\langle a\rangle$ is an ($n-1, n$)-prime ideal.

The converse is obvious.

Corollary 2.16. Let S be a cancellative semiring and $a \in S$ be non-unit. Let $\langle a\rangle$ be a subtractive ideal of S. Then $\langle a\rangle$ is an $(n-1, n)$-weakly prime ideal if and only if $\langle a\rangle$ is an $(n-1, n)$-prime ideal $(n \geq 2)$.

Let S_{1} and S_{2} be commutative semirings. We know that the prime ideals of $S_{1} \times S_{2}$ have the form $I_{1} \times S_{2}$ or $S_{1} \times I_{2}$ where I_{1} is a prime ideal of S_{1} and I_{2} is a prime ideal of S_{2}. Define multiplication on $S_{1} \times S_{2}$ as $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right)$ for all $a_{1}, b_{1} \in S_{1}$ and $a_{2}, b_{2} \in S_{2}$. Now, we prove the following theorem.

THEOREM 2.17. Let S_{1} and S_{2} be commutative semirings and I_{1} be an $(n-$ $1, n)$-weakly prime ideal of S_{1}. Then $I=I_{1} \times S_{2}$ is an $(n-1, n)$ - ϕ-prime ideal of $S=S_{1} \times S_{2}$ for each ϕ with $\phi_{\omega} \leq \phi \leq \phi_{1}$.

Proof. Let I_{1} be an $(n-1, n)$-weakly prime ideal of S_{1}. First, suppose that I_{1} be an $(n-1, n)$-prime ideal of S. Then I is also an $(n-1, n)$-prime ideal and hence is an $(n-1, n)$ - ϕ-prime ideal of S for all ϕ. So, suppose that I_{1} is not $(n-1, n)$ prime. Then $I_{1}^{n}=0$. Therefore, we have $I^{n}=0^{n} \times S_{2}$ and hence $\phi_{\omega}(I)=\{0\} \times S_{2}$. Now, $I \backslash \phi_{\omega}(I)=\left(I_{1} \times S_{2}\right) \backslash\left(\{0\} \times S_{2}\right)$. Thus, $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \cdots\left(a_{n}, b_{n}\right) \in I \backslash \phi_{\omega}(I)$. This gives $a_{1} a_{2} \cdots a_{n} \in I_{1} \backslash\{0\}$. Thus, $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I_{1}$, for some $i \in$ $\{1,2, \ldots, n\}$ which implies $\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \cdots\left(a_{i-1}, b_{i-1}\right)\left(a_{i+1}, b_{i+1}\right) \cdots\left(a_{n}, b_{n}\right) \in I$. Hence I is an $(n-1, n)$ - ϕ_{ω}-prime and hence $(n-1, n)$ - ϕ-prime.

THEOREM 2.18. Let I be a proper ϕ-subtractive ideal of a semiring S. Suppose that I is $(n-1, n)$ - ϕ-prime with $\phi \leq \phi_{n+1}$. Then, either I is $(n-1, n)$-weakly prime or I^{n} is an idempotent.

Proof. If I is $(n-1, n)$-prime, then I is $(n-1, n)$-weakly prime. So, there is nothing to prove. Now, assume that I is not $(n-1, n)$-prime. Therefore, by Theorem 2.7, $I^{n} \subseteq \phi(I)$. Since, $\phi \leq \phi_{n+1}$, therefore $I^{n} \subseteq \phi_{n+1}(I)=I^{n+1}$, which gives $I^{n}=I^{n+1}$. Hence $I^{n}=I^{2 n}$. Thus, I^{n} is idempotent.

3. $(n-1, n)$-weakly prime ideals

In this section, we study the concept of $(n-1, n)$-weakly prime ideals of a commutative semiring S which is a particular case of $(n-1, n)$ - ϕ-prime ideals and prove some results related to them.

Let I be an $(n-1, n)$-weakly prime ideal of a semiring S and $a_{1}, a_{2}, \ldots, a_{n} \in S$. Then $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an n-zero of I, if $a_{1} a_{2} \cdots a_{n}=0$ and $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n}$ $\notin I$ for all $i \in\{1,2, \ldots, n\}(n \geq 2)$.

Theorem 3.1. Let I be a subtractive $(n-1, n)$-weakly prime ideal of a semiring S and $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is an n-zero of I for some $a_{1}, a_{2}, \ldots, a_{n} \in S$. Then $a_{i_{1}} \cdots a_{i_{n-k}} I^{k}=0$ for all $k \in\{1,2, \ldots, n\}$ and $i_{1}, i_{2}, \ldots, i_{n-k} \in\{1,2, \ldots, n\}$. In particular, $I^{n}=0$.

Proof. We prove it by induction on k. For $k=1$, suppose that $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}} I$ $\neq 0$. Then, there exists an element $x \in I$ such that $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}} x \neq 0$. So, $0 \neq a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}}\left(a_{i_{n}}+x\right)$. This gives $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-1}}\left(a_{i_{n}}+x\right) \in I \backslash\{0\}$. Since I is subtractive $(n-1, n)$-weakly prime, we have $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I$ for some $i \in\{1,2, \ldots, n\}$, a contradiction. Thus $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-k}} I=0$. Now, let $a_{i_{1}} \cdots a_{i_{n-(k-1)}} I^{k-1}=0$ for some $k \geq 2$ and for all possible $i_{1}, i_{2}, \ldots, i_{n-(k-1)} \subseteq$ $\{1,2, \ldots, n\}$. Assume that $a_{i_{1}} \cdots a_{i_{n-k}} I^{k} \neq 0$. Then $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-k}} p_{1} p_{2} \cdots p_{k} \neq$ 0 for some $p_{1}, p_{2}, \ldots, p_{k} \in I$. Thus, $a_{i_{1}} a_{i_{2}} \cdots a_{i_{n-k}}\left(a_{i_{n-k+1}}+p_{1}\right)\left(a_{i_{n-k+2}}+\right.$ $\left.p_{2}\right) \cdots\left(a_{i_{n}}+p_{k}\right) \in I \backslash\{0\}$. Consequently, $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I$ for some $i \in\{1,2, \ldots, n\}$ (since I is subtractive $(n-1, n)$-weakly prime), a contradiction. Hence $a_{i_{1}} \cdots a_{i_{n-k}} I^{k}=0$. In particular, $I^{n}=0$.

Theorem 3.2. Let I be a subtractive ($n-1, n$)-weakly prime ideal of a semiring S that is not an $(n-1, n)$-prime ideal. If $a \in \operatorname{Nil}(S)$, then either $a^{n-1} \in I$ or $a^{n-k} I^{k}=0$ for all $k \in\{1,2, \ldots, n-1\}$.

Proof. We prove it by induction on k. Suppose $k=1$. Let $a \in \operatorname{Nil}(S)$ and $a^{n-1} I \neq 0$. Then there exists $y \in I$ such that $a^{n-1} y \neq 0$ and let m be the least positive integer such that $a^{m}=0$. Then $m \geq n$ and $0 \neq a^{n-1} y=$ $a^{n-1}\left(y+a^{m-n+1}\right) \in I$. Therefore, either $a^{n-1} \in I$ or $a^{m-1} \in I$. If $a^{n-1} \in I$, then there is nothing to prove. So, assume that $0 \neq a^{m-1} \in I$. Thus, $a^{n-1} \in I$ (since $m \geq n$ and I is subtractive $(n-1, n)$-weakly prime). Hence for each $a \in \operatorname{Nil}(S)$, we have $a^{n-1} \in I$ or $a^{n-1} I=0$. Next, assume that $v^{n-1} \notin I$, where $v \in \operatorname{Nil}(S)$. Therefore $v^{n-1} I=0$. Suppose that it is true for $n=k$ that $v^{n-k} I^{k}=0$ for all $k \in\{1,2, \ldots, n-1\}$. Suppose that $v^{n-k} I^{k} \neq 0$. Then there exist $i_{1}, i_{2}, \ldots, i_{k} \in I$ such that $v^{n-k} i_{1} i_{2} \cdots i_{k} \neq 0$. Since $v \in \operatorname{Nil}(S)$, we have $v^{m}=0$ where m is the least positive integer. If $m<n$, then $v^{n-1}=0 \in I$, a contradiction. So, $m \geq n$. Now, $0 \neq v^{n-k} i_{1} i_{2} \cdots i_{k}=v^{n-k}\left(v+i_{1}\right)\left(v+i_{2}\right) \cdots\left(v+i_{k-1}\right)\left(v^{m-n+1}+i_{k}\right) \in I$. This gives $v^{n-1} \in I$ or $v^{m-1} \in I$ and hence $v^{n-1} \in I$, (since $m \geq n, v^{m-1} \neq 0$ and I is an $(n-1, n)$-weakly prime). Hence $v^{n-1} \in I$, a contradiction. Thus, $v^{n-k} I^{k}=0$.

Theorem 3.3. Let S be a semiring and $\left\{I_{i}\right\}_{i \in \Delta}$ be a family of subtractive
($n-1, n$)-weakly prime ideals of S that are not $(n-1, n)$-prime ideals of S. Then $I=\bigcap_{i \in \Delta} I_{i}$ is an $(n-1, n)$-weakly prime ideal of S.

Proof. Let $\left\{I_{i}\right\}_{i \in \Delta}$ be a family of $(n-1, n)$-weakly prime ideals of S that are not $(n-1, n)$-prime ideals of S and $I=\bigcap_{i \in \Delta} I_{i}$. Therefore by Corollary 2.9, we have $\sqrt{I_{i}}=\sqrt{0}$ for all $i \in \Delta$. This gives $\bigcap_{i \in \Delta} \sqrt{I_{i}}=\sqrt{0}$. Thus, we have $\sqrt{I}=\sqrt{0}$, since $\bigcap_{i \in \Delta} \sqrt{I_{i}}=\sqrt{I}$. Next, let $a_{1} a_{2} \cdots a_{n} \in I \backslash\{0\}$ for some $a_{1}, a_{2}, \ldots, a_{n} \in S$. If $a_{1} a_{2} \cdots a_{n-1} \in I$, then there is nothing to prove. So, let $a_{1} a_{2} \cdots a_{n-1} \notin I$. Then there exists $i \in \Delta$ such that $a_{1} a_{2} \cdots a_{n-1} \notin I_{i}$ and we also have $a_{1} a_{2} \cdots a_{n} \in$ $I_{i} \backslash\{0\}$. This gives $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I_{i}$ for some $i \in\{1,2, \ldots, n-1\}$, since I_{i} is an $(n-1, n)$-weakly prime ideal of S and $a_{1} a_{2} \cdots a_{n-1} \notin I_{i}$. Thus, $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I_{i} \subseteq \sqrt{I_{i}}=\sqrt{0}=\sqrt{I}$ for some $i \in\{1,2, \ldots, n-1\}$. Hence I is an $(n-1, n)$-weakly prime ideal of S.

Theorem 3.4. Let $S=S_{1} \times S_{2} \times \cdots \times S_{n}$, where S_{i} is a commutative semiring for all $i \in\{1,2, \ldots, n\}$. If I is an $(n-1, n)$-weakly prime ideal of S, then either $I=0$ or $I=I_{1} \times I_{2} \times \ldots \times I_{i-1} \times S_{i} \times I_{i+1} \times \ldots \times I_{n}$ for some $i \in\{1,2, \ldots, n\}$ and if $I_{j} \neq S_{j}$ for $j \neq i$, then I_{j} is an $(n-1, n)$-prime ideal in S_{j}.

Proof. Let $I=I_{1} \times I_{2} \times \cdots \times I_{n}$ be an $(n-1, n)$-weakly prime ideal of S and let $I \neq 0$. Then $(0,0, \ldots, 0) \neq\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in I$. Therefore, $\left(a_{1}, a_{2}, \ldots, a_{n}\right)=$ $\left(a_{1}, 1, \ldots, 1\right)\left(1, a_{2}, \ldots, 1\right) \cdots\left(1,1, \ldots, a_{n}\right) \in I$. Since I is $(n-1, n)$-weakly prime, we have $\left(a_{1}, a_{2}, \ldots a_{i-1}, 1, a_{i+1}, \ldots, a_{n}\right) \in I$ for some $i \in\{1,2, \ldots, n\}$. Thus $(0, \ldots, 1,0, \ldots, 0) \in I$. Hence $I=I_{1} \times I_{2} \times \cdots \times I_{i-1} \times S_{i} \times I_{i+1} \times \cdots \times I_{n}$. Next, suppose $I_{j} \neq S_{j}$ for $i \neq j$. Let $i<j$ and $x_{1} x_{2} \cdots x_{n} \in I_{j}$. Then

$$
\begin{aligned}
& 0 \neq\left(0,0, \ldots, 0,1, \ldots, x_{1} x_{2} \cdots x_{n}, 0 \ldots, 0\right) \\
& =\left(0,0, \ldots, 1,0, \ldots, 0, x_{1}, 0,0 \ldots, 0\right)\left(0,0, \ldots, 1,0, \ldots, 0, x_{2}, 0, \ldots, 0\right) \\
& \quad \cdots\left(0,0, \ldots, 1,0, \ldots, 0,0, x_{n}, 0, \ldots, 0\right) \in I
\end{aligned}
$$

Thus, we have $\left(0,0, \ldots, 0,1,0, \ldots, x_{1} x_{2} \cdots x_{l-1} x_{l+1} \cdots x_{n}, 0, \ldots, 0\right) \in I$ for some $l \in\{1,2, \ldots, n\}$. Hence $x_{1} x_{2} \cdots x_{l-1} x_{l+1} \cdots x_{n} \in I_{j}$. Consequently, I_{j} is an $(n-$ $1, n)$-prime ideal of S_{j}. The other cases for $j<i$ are similar.

A semiring S is said to be a local semiring denoted by (S, M) if and only if S has a unique maximal subractive ideal, say M. Darani [9] proved that the semiring S is a local semiring if and only if the set of non-semi-unit elements of S forms a subtractive ideal. It is also proved that if S is a local semiring then the unique maximal subtractive ideal of S is precisely the set of non-semi-units of S.

THEOREM 3.5. Let (S, M) be a local semiring with $M^{n}=0$. Then every proper subtractive ideal of S is $(n-1, n)$-weakly prime.

Proof. Suppose that $M^{n}=0$, and let I be a proper subtractive ideal of S and $a_{1}, a_{2}, \ldots, a_{n} \in S . \quad$ Suppose that $0 \neq a_{1} a_{2} \cdots a_{n} \in I . \quad$ Since (S, M) is a local semiring then we have $a_{i} \in M$ for some $i \in\{1,2, \ldots, n\}$. Since each $a_{i}, i \in\{1,2, \ldots, n\}$ does not belong to M, at the same time because in
this case $a_{1} a_{2} \cdots a_{n} \in M^{n}=0$, this gives a contradiction. So a_{i} for some $i \in\{1,2, \ldots, n\}$ must be a semi-unit. Assume that a_{i} is a semi-unit. Then there exist $r, s \in S$ such that $1+r a_{i}=s a_{i}$. So $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n}+r a_{1} a_{2} \cdots a_{n}=$ $\left(1+r a_{i}\right) a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n}=s a_{1} a_{2} \cdots a_{n} \in I$ and $r a_{1} a_{2} \cdots a_{n} \in I$ imply that $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I$ for some $i \in\{1,2, \ldots, n\}$. Thus I is an $(n-1, n)$-weakly prime.

Definition 3.6. [1, Definition (4)] An ideal I of a semiring S is called a Q-ideal (partitioning ideal) if there exists a subset Q of S such that
(i) $S=\cup\{q+I: q \in Q\}$
(ii) If $q_{1}, q_{2} \in Q$, then $\left(q_{1}+I\right) \cap\left(q_{2}+I\right) \neq \emptyset \Leftrightarrow q_{1}=q_{2}$.

Let I be a Q-ideal of a semiring S. Then $S / I_{(Q)}=\{q+I: q \in Q\}$ forms a semiring under the following addition ' \oplus ' and multiplication ' \odot ', $\left(q_{1}+I\right) \oplus\left(q_{2}+I\right)=$ $q_{3}+I$ where $q_{3} \in Q$ is unique such that $q_{1}+q_{2}+I \subseteq q_{3}+I$, and $\left(q_{1}+I\right) \odot\left(q_{2}+I\right)=$ $q_{4}+I$ where $q_{4} \in Q$ is unique such that $q_{1} q_{2}+I \subseteq q_{4}+I$. This semiring $S / I_{(Q)}$ is called the quotient semiring of S by I and denoted by $\left(S / I_{(Q)}, \oplus, \odot\right)$ or just $S / I_{(Q)}$. By definition of a Q-ideal, there exists a unique $q_{0} \in Q$ such that $0+I \subseteq q_{0}+I$. Then $q_{0}+I$ is a zero element of $S / I_{(Q)}$. Clearly, if S is commutative then so is $S / I_{(Q)}$.

Theorem 3.7. Let S be a semiring, I be a Q-ideal of S and P a subtractive ideal of S such that $I \subseteq P$. Then P is an $(n-1, n)$-prime ideal of S if and only if $P / I_{(Q \cap P)}$ is an $(n-1, n)$-prime ideal of $S / I_{(Q)}$.

Proof. Let P be an $(n-1, n)$-prime ideal of S. Suppose that $q_{1}+I, q_{2}+$ $I, \ldots, q_{n}+I \in S / I_{(Q)}$ are such that $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{n}+I\right)=q_{r}+I \in$ $P / I_{(Q \cap P)}$ where $q_{r} \in Q \cap P$ is a unique element such that $q_{1} q_{2} \cdots q_{n}+I \subseteq q_{r}+I \in$ $P / I_{(Q \cap P)}$. So $q_{1} q_{2} \cdots q_{n}=q_{r}+i$, for some $i \in I$. Since P is a subtractive $(n-1, n)$ prime ideal of S and $I \subseteq P$, therefore $q_{1} q_{2} \cdots q_{i-1} q_{i+1} \cdots q_{n} \in P$ for some $i \in$ $\{1,2, \ldots, n\}$. Now $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{i-1}+I\right) \odot\left(q_{i+1}+I\right) \odot \cdots \odot\left(q_{n}+I\right)=i_{1}+I$ where $i_{1} \in Q$ is a unique element such that $q_{1} q_{2} \cdots q_{i-1} q_{i+1} \cdots q_{n}+I \subseteq i_{1}+I$. So $i_{1}+f=q_{1} q_{2} \cdots q_{i-1} q_{i+1} \cdots q_{n}+e$ for some $e, f \in I$. Since P is a subtractive ideal of S and $I \subseteq P$, we have $i_{1} \in P$, therefore $i_{1} \in Q \cap P$. Hence $P / I_{(Q \cap P)}$ is an ($n-1, n$)-prime ideal of $S / I_{(Q)}$.

Conversely, let $P / I_{(Q \cap P)}$ is an $(n-1, n)$-prime ideal of $S / I_{(Q)}$. Let $a_{1} a_{2} \cdots a_{n} \in$ P for some $a_{1}, a_{2}, \ldots, a_{n} \in S$. Since I is a Q-ideal of S, therefore there exist $q_{1}, q_{2}, \ldots, q_{n} \in Q$ such that $a_{1} \in q_{1}+I, a_{2} \in q_{2}+I, \ldots, a_{n} \in q_{n}+I$ and $a_{1} a_{2} \cdots a_{n} \in\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{n}+I\right)=q_{k}+I$, for some $q_{k} \in Q$. So, $a_{1} a_{2} \cdots a_{n}=q_{k}+i_{2} \in P$ for some $i_{2} \in I$. Since P is a subtractive ideal of S and $I \subseteq P$, we have $q_{k} \in P$. So, $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{n}+I\right)=q_{k}+I \in P / I_{(Q \cap P)}$ which gives $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{i-1}+I\right) \odot\left(q_{i+1}+I\right) \odot \cdots \odot\left(q_{n}+I\right) \in P / I_{(Q \cap P)}$ for some $i \in\{1,2, \ldots, n\}$, since $P / I_{(Q \cap P)}$ is an $(n-1, n)$-prime ideal of $S / I_{(Q)}$. Now for some $i \in\{1,2, \ldots, n\}$, we have $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{i-1}+I\right) \odot$ $\left(q_{i+1}+I\right) \odot \cdots \odot\left(q_{n}+I\right) \in P / I_{(Q \cap P)}$. Then there exists $q_{h} \in Q \cap P$ such that
$a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{i-1}+I\right) \odot\left(q_{i+1}+I\right) \odot \cdots \odot\left(q_{n}+I\right)=$ $q_{h}+I$. This gives $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n}=q_{h}+i_{3}$ for some $i_{3} \in I$. This implies $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in P$ for some $i \in\{1,2, \ldots, n\}$. Thus P is an $(n-1, n)$-prime ideal of S.

Theorem 3.8. Let S be a semiring, I a Q-ideal of S and P a subtractive ideal of S such that $I \subseteq P$. Then
(i) if P is an $(n-1, n)$-weakly prime ideal of S, then $P / I_{(Q \cap P)}$ is an $(n-1, n)$ weakly prime ideal of $S / I_{(Q)}$;
(ii) if I and $P / I_{(Q \cap P)}$ are $(n-1, n)$-weakly prime ideals of S and $S / I_{(Q)}$ respectively, then P is an $(n-1, n)$-weakly prime ideal of S.

Proof. (i) If $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{n}+I\right) \neq 0$ in S / I_{Q}, then $q_{1} q_{2} \cdots q_{n} \neq$ 0 in S and hence the proof follows from the above theorem.
(ii) Let $a_{1}, a_{2}, \ldots, a_{n} \in S$ be such that $0 \neq a_{1} a_{2} \cdots a_{n} \in P$. If $a_{1} a_{2} \cdots a_{n} \in I$ then $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in I \subseteq P$ for some $i \in\{1,2, \ldots, n\}$, since I is an $(n-1, n)$-weakly prime ideal of S. So, assume that $a_{1} a_{2} \cdots a_{n} \notin I$. Then there are elements $q_{1}, q_{2}, \cdots q_{n} \in Q$ such that $a_{1} \in q_{1}+I, a_{2} \in q_{2}+I, \ldots, a_{n} \in q_{n}+I$. Therefore for some $i_{1}, i_{2}, \ldots, i_{n} \in I, a_{1}=q_{1}+i_{1}, a_{2}=q_{2}+i_{2}, \ldots, a_{n}=q_{n}+i_{n}$. As $a_{1} a_{2} \cdots a_{n}=q_{1} q_{2} \cdots q_{n}+q_{1} q_{2} \cdots q_{n-1} i_{n}+\cdots+q_{n} i_{1} i_{2} \cdots i_{n-1}+i_{1} i_{2} \cdots i_{n} \in P$ and since P is subtractive, we have $q_{1} q_{2} \cdots q_{n} \in P$. Consider, $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot$ $\left(q_{n}+I\right)=q_{k}+I$ where $q_{k} \in Q$ is the unique element such that $q_{1} q_{2} \cdots q_{n}+I \subseteq$ $q_{k}+I$. Since P is subtractive, we have $q_{k} \in P \cap Q$. Hence $q_{1} q_{2} \cdots q_{n}+I \subseteq$ $q_{k}+I \in P / I_{Q \cap P}$, that is, $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{n}+I\right) \in P / I_{Q \cap P}$. Let $q \in Q$ be the unique element such that $q+I$ is the zero element in S / I_{Q}. If $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{n}+I\right)=0_{S / I_{Q}}=q+I$, then there exist $r, s \in I$ such that $q_{1} q_{2} \cdots q_{n}+r=q+s \in I$. Therefore, $q_{1} q_{2} \cdots q_{n} \in I$, since I is a Q-ideal of S therefore it is subtractive by [15, Corollary 8.23]. This gives $a_{1} a_{2} \cdots a_{n} \in I$, a contradiction. Hence, $0_{S / I_{Q}} \neq\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \odot \cdots \odot\left(q_{n}+I\right) \in P / I_{Q \cap P}$. This gives $\left(q_{1}+I\right) \odot\left(q_{2}+I\right) \cdots \odot\left(q_{i-1}+I\right) \odot\left(q_{i+1}+I\right) \odot \cdots \odot\left(q_{n}+I\right) \in P / I_{Q \cap P}$ for some $i \in\{1,2, \ldots, n\}$, since $P / I_{Q \cap P}$ is an $(n-1, n)$-weakly prime ideal of S / I_{Q}. Thus, we have $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{n} \in P$ for some $i \in\{1,2, \ldots, n\}$. Hence, P is an $(n-1, n)$-weakly prime ideal of S.

REFERENCES

[1] P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc, 21 (1969), 412-416.
[2] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646-1672.
[3] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra, 36 (2008), 686-696.
[4] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831-840.
[5] R. E. Atani and S. E. Atani, Spectra of semimodules, Bul. Acad. De Stiinte, A Republicii Moldova. Math., 3(67) (2011), 15-28.
[6] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417-429.
[7] A. Badawi and A. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., 39(2) (2013), 441-452.
[8] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra, 33 (2005), 43-49.
[9] A. Y. Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J., 52(1) (2012), 91-97.
[10] M. K. Dubey, Prime and weakly prime ideals in semirings, Quasigroups \& Related Systems 20 (2012), 151-156.
[11] M. K. Dubey and P. Sarohe, Generalizations of prime subsemimodules, Southeast Asian Bull. Math., to appear.
[12] M. K. Dubey and P. Sarohe, Generalizations of prime and primary ideals in commutative semirings, Southeast Asian Bull. Math., to appear.
[13] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra, 40(4) (2012), 1268-1279.
[14] M. Ebrahimpour, On generalisations of almost prime and weakly prime ideals, Bull. Iranian Math. Soc., 40(2) (2014), 531-540.
[15] J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 1999.
[16] V. Gupta and J. N. Chaudhari, Characterization of weakly prime subtractive ideals in semirings, Bull. Inst. Math. Sinica, 3 (2008), 347-352.
(received 06.09.2014; in revised form 17.01.2015; available online 03.03.2015)
M.K.D.: SAG, DRDO, Metcalf House, Delhi 110054, India

E-mail: kantmanish@yahoo.com
P.S.: Department of Mathematics, Lakshmibai College, University of Delhi, Delhi 110052, India

E-mail: poonamsarohe@gmail.com

[^0]: 2010 Mathematics Subject Classification: 16Y30, 16Y60
 Keywords and phrases: Semiring; $(n-1, n)$ - ϕ-prime ideal; ϕ-subtractive ideal; Q-ideal.

