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On 2-absorbing ideals in commutative semirings

Pratibha Kumar, Manish Kant Dubey and Poonam Sarohe

Abstract. We study 2-absorbing ideals in a commutative semiring S with 1 6= 0 and prove some

important results analogous to ring theory. More general form of the Prime Avoidance Theorem

is also given. We also prove that if I = 〈a1, a2, . . . , ar〉 is a �nitely generated ideal of a semiring

S and P1, P2, . . . , Pn are subtractive prime ideals of S such that I * Pi for each 1 6 i 6 n, then

there exist b2, . . . , br ∈ S such that c = a1 + b2a2 + . . .+ brar /∈
n⋃

i=1
Pi.

1. Introduction

The semiring is an important algebraic structure which plays a prominent role in
various branches of mathematics like combinatorics, functional analysis, topology,
graph theory, optimization theory, cryptography etc. as well as in diverse areas of
applied science such as theoretical physics, computer science, control engineering,
information science, coding theory etc. The concept of semiring was �rst intro-
duced by H. S. Vandiver [14] in 1934. After that several authors have apllied this
concept in various disciplines in many ways.

A commutative semiring is a commutative semigroup (S, ·) and a commutative
monoid (S,+, 0S) in which 0S is the additive identity and 0S · x = x · 0S = 0S for
all x ∈ S, both are connected by ring like distributivity. A subset I of a semiring
S is called an ideal of S if a, b ∈ I and r ∈ S, a+ b ∈ I and ra, ar ∈ I. An ideal I
of a semiring S is called subtractive if a, a+b ∈ I, b ∈ S then b ∈ I. A proper ideal
P of a semiring S is said to be prime (resp. weakly prime) if for some a, b ∈ S
such that ab ∈ P (resp. 0 6= ab ∈ P ), then either a ∈ P or b ∈ P .

Throughout this paper, semiring S will be considered as commutative with
identity 1 6= 0.

2. Prime ideals

The concept of prime ideal plays an important role in ring and semiring theory. we
refer ([8], [10], [13]), for more understanding about prime ideals. In this section,
we give the more general form of The Prime Avoidance Theorem for semirings.
We start this section with the statement of the following lemma.
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Lemma 2.1 ([15], Lemma 2.5). Let P1, P2 be subtractive ideals of a commutative
semiring S and I be an ideal of S such that I ⊆ P1 ∪P2. Then I ⊆ P1 or I ⊆ P2.

Theorem 2.2 ([15], Theorem 2.6). (The Prime Avoidance Theorem)
Let S be a semiring and P1, . . . , Pn (n > 2) be subtractive ideals of S such that

almost two of P1, . . . , Pn are not prime. Let I be an ideal of S such that I ⊆
n⋃

i=1

Pi.

Then I ⊆ Pj for some 1 6 j 6 n.

The next theorem is the more general form of the Prime Avoidance Theorem
of semirings.

Theorem 2.3. (Extented version of the Prime Avoidance Theorem)
Let S be a semiring and P1, . . . , Pn be subtractive prime ideals of S. Let I be an

ideal of S and a ∈ S such that aS + I *
n⋃

i=1

Pi. Then there exists c ∈ I such that

a+ c /∈
n⋃

i=1

Pi.

Proof. Assume that Pi * Pj and Pj * Pi for all i, j ∈ {1, 2, . . . , n} and i 6= j.
Suppose that a lies in all of P1, P2, . . . , Pk but none of Pk+1, . . . , Pn. If k = 0,

then a = a + 0 /∈
n⋃

i=1

Pi, which is required. So, let k > 1. Now, I *
k⋃

i=1

Pi,

for otherwise, by the Prime Avoidance Theorem, we would get I ⊆ Pj for some

1 6 j 6 k, which gives aS + I ⊆ Pj ⊆
n⋃

i=1

Pi, which contradicts to the hypothesis.

Thus, there exists d ∈ I \
k⋃

i=1

Pi. Also, Pk+1 ∩ . . .∩Pn * P1 ∪ . . .∪Pk. Otherwise,

if Pk+1 ∩ . . . ∩ Pn ⊆ P1 ∪ . . . ∪ Pk, by the Prime Avoidance Theorem, we would
get a contradiction. Therefore there exists b ∈ Pk+1 ∩ . . . . ∩ Pn \ (P1 ∪ . . . ∪ Pk).
Now, de�ne c = db ∈ I and note that c ∈ Pk+1 ∩ . . . ∩ Pn \ (P1 ∪ . . . ∪ Pk). Since

a ∈ P1 ∩ . . . ∩ Pk \ (Pk+1 ∪ . . . ∪ Pn), it follows that a + c /∈
n⋃

i=1

Pi (since P
′
is are

subtractive).

Next theorem says that if I is a �nitely generated ideal of S satisfying the
assumption of the Prime Avoidance Theorem for semirings, then the linear com-

bination of the generators of I also avoids
n⋃

i=1

Pi, where P
′
is, (1 6 i 6 n) are

subtractive prime ideals of S.

Theorem 2.4. Let S be a semiring and I = 〈a1, a2, . . . , ar〉 be a �nitely generated
ideal of S. Let P1, P2, . . . , Pn be subtractive prime ideals of S such that I * Pi for
each i, 1 6 i 6 n. Then there exist b2, . . . , br ∈ S such that c = a1 + b2a2 + . . .+

brar /∈
n⋃

i=1

Pi.
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Proof. We prove it by induction on n. Without loss of generality, assume that
Pi * Pj for all i 6= j. If n = 1, then clearly c = a1 + b2a2 + . . . + brar /∈ P1.
Assume that the result is true for (n − 1) subtractive prime ideals of S. Then,

there exist c2, c3, . . . , cr ∈ S such that d = a1 + c2a2 + . . . + crar /∈
n−1⋃
i=1

Pi. If

d /∈ Pn, then we are through. So assume that d ∈ Pn. If a2, . . . , ar ∈ Pn, then
from the expression for d, we have a1 ∈ Pn, (since d = a1 + c2a2 + . . . + crar
and d ∈ Pn implies a1 ∈ Pn, since Pn is subtractive), which is a contradiction to
I * Pn (since, if a1 ∈ Pn and we have already assumed that a2, . . . , ar ∈ Pn, we
get a1, . . . , ar ∈ Pn, this implies that I ⊆ Pn). So for some i, ai /∈ Pn. Without

loss of generality, let i = 2. Since Pi * Pj for all i 6= j, we can �nd x ∈
n−1⋂
i=1

Pi

such that x /∈ Pn. Thus, c = a1 + (c2 + x)a2 + . . .+ crar /∈
n⋃

i=1

Pi.

3. 2-absorbing ideals

The concept of 2-absorbing and weakly 2-absorbing ideals of a commutative ring
with non-zero unity was �rst introduced by Badawi and Darani in [3], [4] which
are generalizations of prime and weakly prime ideals in commutative ring, see
[1]. After that Darani [7] and Kumar et. al [11], explored these concepts in
commutative semiring and characterized many results in terms of 2-absorbing and
weakly 2-absorbing ideals in commutative semiring. Most of the results of this
section are inspired from [5] and [6].

De�nition 3.1. A proper ideal I of a semiring S is said to be a 2-absorbing ideal
of S if abc ∈ I implies ab ∈ I or bc ∈ I or ac ∈ I for some a, b, c ∈ S.

De�nition 3.2. A proper ideal I of a semiring S is said to be a weakly 2-absorbing
ideal if whenever a, b, c ∈ S such that 0 6= abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I.

Clearly, one can see that every 2-absorbing ideal of a semiring S is a weakly 2-
absorbing ideal of S but converse need not be true. For more details of 2-absorbing
and weakly 2-absorbing ideals in commutative semirings, we refer [7], [11].

Lemma 3.3. Let I be a subtractive 2-absorbing ideal of S. Suppose that abJ ⊆ I
for some a, b ∈ S and an ideal J of S. If ab /∈ I, then either aJ ⊆ I or bJ ⊆ I.

Proof. Suppose that aJ * I and bJ * I. Therefore, there are some x, y ∈ J such
that ax /∈ I and by /∈ I. Since abx ∈ I and ab /∈ I and ax /∈ I, we have bx ∈ I.
Since aby ∈ I and ab /∈ I and by /∈ I, we have ay ∈ I. Now, since ab(x + y) ∈ I
and ab /∈ I, we have a(x + y) ∈ I or b(x + y) ∈ I, since I is a 2-absorbing ideal
of S. If a(x + y) ∈ I and ay ∈ I, then ax ∈ I (since I is subtractive), which is
a contradiction. Similarly, if b(x + y) ∈ I and bx ∈ I, we get by ∈ I (since I is
subtractive), which is again a contradiction. Hence, either aJ ⊆ I or bJ ⊆ I.
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Theorem 3.4. Let I be a proper subtractive ideal of S. Then I is a 2-absorbing
ideal of S if and only if whenever I1I2I3 ⊆ I for some ideals I1, I2, I3 of S, then
either I1I2 ⊆ I or I2I3 ⊆ I or I3I1 ⊆ I.

Proof. Let I1I2I3 ⊆ I for some ideals I1, I2, I3 of S, then I1I2 ⊆ I or I2I3 ⊆ I or
I1I3 ⊆ I. Then by de�nition, I is a 2-absorbing ideal of S. Conversely, let I be
a 2-absorbing ideal of S and I1I2I3 ⊆ I for some ideals I1, I2, I3 of S, such that
I1I2 * I. We show that I1I3 ⊆ I or I2I3 ⊆ I. If possible, suppose that I1I3 * I
and I2I3 * I. Then there exist a1 ∈ I1 and a2 ∈ I2 such that a1I3 * I and
a2I3 * I. Also, a1a2I3 ⊆ I and a1I3 * I and a2I3 * I, we have a1a2 ∈ I by above
lemma. Since I1I2 * I, therefore for some a ∈ I1, b ∈ I2, ab /∈ I. Since abI3 ⊆ I
and ab /∈ I, we have aI3 ⊆ I or bI3 ⊆ I by above lemma. Here three cases arise.

Case I: Suppose that aI3 ⊆ I, but bI3 * I. Since a1bI3 ⊆ I and bI3 * I and
a1I3 * I, by above lemma, we have a1b ∈ I. Since (a + a1)bI3 ⊆ I and aI3 ⊆ I,
but a1I3 * I, therefore (a+ a1)I3 * I. Since bI3 * I and (a+ a1)I3 * I, we have
(a + a1)b ∈ I by above lemma. Again, (a + a1)b = ab + a1b ∈ I and a1b ∈ I, we
conclude that ab ∈ I (since I is subtractive), which is a contradiction.

Case II: Suppose that bI3 ⊆ I, but aI3 * I. Since aa2I3 ⊆ I and aI3 * I and
a2I3 * I, by above lemma, we have aa2 ∈ I. Again, a(b+ a2)I3 ⊆ I and bI3 ⊆ I,
but a2I3 * I, we have (b+ a2)I3 * I. Since aI3 * I and (b+ a2)I3 * I, we have
a(b + a2) ∈ I by above lemma. Since a(b + a2) = ab + aa2 ∈ I and aa2 ∈ I, we
conclude that ab ∈ I (since I is subtractive), which is a contradiction.

Case III: Suppose that aI3 ⊆ I and bI3 ⊆ I. Since bI3 ⊆ I and a2I3 * I, we
have (b+a2)I3 * I. Since a1(b+a2)I3 ⊆ I and a1I3 * I and (b+a2)I3 * I, we have
a1(b+ a2) = a1b+ a1a2 ∈ I by lemma above. Since a1b+ a1a2 ∈ I and a1a2 ∈ I,
we have ba1 ∈ I (since I is subtractive). Since aI3 ⊆ I and a1I3 * I, we have
(a+ a1)I3 * I. Since (a+ a1)a2I3 ⊆ I and a2I3 * I and (a+ a1)I3 * I, we have
(a+ a1)a2 = aa2 + a1a2 ∈ I by above lemma. Since a1a2 ∈ I and aa2 + a1a2 ∈ I,
we have aa2 ∈ I (since I is subtractive). Now, since (a + a1)(b + a2)I3 ⊆ I and
(a+a1)I3 * I and (b+a2)I3 * I, we have (a+a1)(b+a2) = ab+aa2+ba1+a1a2 ∈ I
by above lemma. Since aa2, ba1, a1a2 ∈ I, we have aa2 + ba1 + a1a2 ∈ I. Since
ab+aa2+ ba1+a1a2 ∈ I and aa2+ ba1+a1a2 ∈ I, we conclude that ab ∈ I (since
I is subtractive), which is a contradiction. Hence I1I3 ⊆ I or I2I3 ⊆ I.

Result 3.5 ([2], Lemma 2.1 (ii)). If I is a subtractive ideal of S, then (I : a) is a
subtractive ideal of S, where (I : a) = {s ∈ S : sa ∈ I}.

Proof. It is straight forward.

Next theorem gives some characterizations of 2-absorbing ideals of semiring.
Mostafanasab and Darani in [12], proved it for 2-absorbing primary ideals of rings.

Theorem 3.6. Let S be a semiring and I be a proper subtractive ideal of S. Then
the following are equivalent:

(1) I is a 2-absorbing ideal of S;



On 2-absorbing ideals in commutative semirings 71

(2) For all a, b ∈ S such that ab /∈ I, (I : ab) ⊆ (I : a) or (I : ab) ⊆ (I : b);

(3) For all a ∈ S and for all ideal J of S such that aJ * I, (I : aJ) ⊆ (I : J) or
(I : aJ) ⊆ (I : a);

(4) For all ideals J,K of S such that JK * I, (I : JK) ⊆ (I : J) or (I : JK) ⊆
(I : K);

(5) For all ideals J,K,L of S such that JKL ⊆ I, either JK ⊆ I or KL ⊆ I or
JL ⊆ I.

Proof. (1) ⇒ (2). Let ab /∈ I where a, b ∈ S and x ∈ (I : ab). Then xab ∈ I.
Therefore, either xa ∈ I or xb ∈ I and hence either x ∈ (I : a) or x ∈ (I : b). Thus,
(I : ab) ⊆ (I : a) ∪ (I : b). Then we have (I : ab) ⊆ (I : a) or (I : ab) ⊆ (I : b)
(since if A,B are subtractive ideals of a semiring S such that C ⊆ A∪B where C
is an ideal of S, then either C ⊆ A or C ⊆ B).
(2) ⇒ (3), (3) ⇒ (4), (4) ⇒ (5) and (5) ⇒ (1) is similar as the proof of ([12],
Theorem 2.1), by using the result (if A,B are subtractive ideals of a semiring S
such that C ⊆ A ∪B where C is an ideal of S, then either C ⊆ A or C ⊆ B).

Theorem 3.7. Let I be a 2-absorbing ideal of S and A be a multiplicatively closed
subset of S such that I ∩A = Φ. Then A−1I is also a 2-absorbing ideal of A−1S.

Proof. Let (a/s)(b/t)(c/k) ∈ A−1I for some a, b, c ∈ S and s, t, k ∈ A. Then there
exists u ∈ A such that uabc ∈ I. Therefore, we have uab ∈ I or bc ∈ I or uac ∈ I,
since I is a 2-absorbing ideal of S. If uab ∈ I, then (a/s)(b/t) = (uab/ust) ∈ A−1I.
If bc ∈ I, then (b/t)(c/k) ∈ A−1I. If uac ∈ I, then (a/s)(c/k) = (uac/usk) ∈
A−1I.

Lemma 3.8. Let S be a semiring and P1 and P2 be distinct weakly prime ideals
of S. Then P1 ∩ P2 is also a weakly 2-absorbing ideal of S.

Proof. Let 0 6= abc ∈ P1 ∩ P2 for some a, b, c ∈ S. Suppose that ab /∈ P1 ∩ P2 and
ac /∈ P1 ∩ P2. Assume that ab /∈ P1 and ac /∈ P1. Since 0 6= abc ∈ P1 and P1

is weakly prime, we get c ∈ P1 and hence ac ∈ P1, a contradiction. Similarly, if
ab /∈ P2 and ac /∈ P2, we would get a contradiction. Therefore, either ab /∈ P1 and
ac /∈ P2 or ab /∈ P2 and ac /∈ P1. First assume that, ab /∈ P1 and ac /∈ P2. Since
0 6= abc ∈ P1, we get c ∈ P1 and hence bc ∈ P1. Similarly, since 0 6= abc ∈ P2,
we get b ∈ P2 and hence bc ∈ P2. Thus, bc ∈ P1 ∩ P2. Hence P1 ∩ P2 is a weakly
2-absorbing ideal of S. Likewise, we can prove for the second case when ab /∈ P2

and ac /∈ P1, we have bc ∈ P1 ∩ P2.

De�nition 3.9. Let I be a weakly 2-absorbing ideal of S. We say that (a, b, c),
where a, b, c ∈ S is a triple zero of I if abc = 0, ab /∈ I, bc /∈ I and ac /∈ I.

Theorem 3.10. Let I be a subtractive weakly 2-absorbing ideal of S and (a, b, c)
be a triple zero of I for some a, b, c ∈ S. Then
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(1) abI = bcI = acI = {0}.

(2) aI2 = bI2 = cI2 = {0}.

Proof. (1). Let abI 6= 0. Then there exists x ∈ I such that abx 6= 0. Therefore,
ab(c + x) 6= 0. Since I is a weakly 2-absorbing ideal of S and ab /∈ I, we have
a(c + x) ∈ I or b(c + x) ∈ I and hence ac ∈ I or bc ∈ I (since I is subtractive),
which is a contradiction. Thus, abI = 0. Similarly, bcI = acI = 0.

(2). Let aI2 6= 0. Then there exist x, y ∈ I such that axy 6= 0. Therefore (1)
gives, a(b + x)(c + y) = axy 6= 0. Since I is a weakly 2-absorbing ideal of S, we
have either a(b + x) ∈ I or a(c + y) ∈ I or (b + x)(c + y) ∈ I. Thus, ab ∈ I or
ac ∈ I or bc ∈ I (since I is subtractive), which is a contradiction. Hence aI2 = 0.
Similarly, bI2 = cI2 = 0.

De�nition 3.11. Let I be a weakly 2-absorbing ideal of S and let I1I2I3 ⊆ I for
some ideals I1, I2, I3 of S. We say that I is a free triple zero with respect to I1I2I3
if (a, b, c) is not a triple zero of I for every a ∈ I1, b ∈ I2, and c ∈ I3.

Conjecture 3.12. If I is a weakly 2-absorbing ideal of S with 0 6= I1I2I3 ⊆ I for
some ideals I1, I2, I3 ∈ S, then I is a free triple zero with respect to I1I2I3.

Lemma 3.13. Let I be a subtractive weakly 2-absorbing ideal of S. Let abJ ⊆ I
for some a, b ∈ S and some ideal J of S such that (a, b, c) is not a triple zero of I
for every c ∈ J . If ab /∈ I, then either aJ ⊆ I or bJ ⊆ I.

Proof. Suppose that aJ * I and bJ * I. Then, there are some x, y ∈ J such that
ax /∈ I and by /∈ I. Since (a, b, x) is not a triple zero of I and abx ∈ I and ab /∈ I
and ax /∈ I, we have bx ∈ I. Since (a, b, y) is not a triple zero of I and aby ∈ I
and ab /∈ I and by /∈ I, we have ay ∈ I. Again, (a, b, x+ y) is not a triple zero of
I and ab(x + y) ∈ I and ab /∈ I, we have a(x + y) ∈ I or b(x + y) ∈ I, since I is
a weakly 2-absorbing ideal of S. If a(x+ y) ∈ I and ay ∈ I, then ax ∈ I (since I
is subtractive), which is a contradiction. Similarly, if b(x+ y) ∈ I and bx ∈ I, we
get by ∈ I (since I is subtractive), which is a contradiction. Hence, either aJ ⊆ I
or bJ ⊆ I.

Remark 3.14. If I is a weakly 2-absorbing ideal of S and I1I2I3 ⊆ I for some
ideals I1, I2, I3 of S such that I is a free triple zero with respect to I1I2I3. Then
ab ∈ I or ac ∈ I or bc ∈ I for all a ∈ I1, b ∈ I2 and c ∈ I3.

Let I be a weakly 2-absorbing ideal of S. According to the following result, we
see that Conjecture 3.12 is valid if and only if whenever 0 6= I1I2I3 ⊆ I for some
ideals I1, I2, I3 of S, then either I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I.

Theorem 3.15. Let I be a subtractive weakly 2-absorbing ideal of S. If 0 6=
I1I2I3 ⊆ I for some ideals I1, I2, I3 of S such that I is a free triple zero with
respect to I1I2I3 , then either I1I2 ⊆ I or I2I3 ⊆ I or I3I1 ⊆ I.
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Proof. Let I be a subtractive weakly 2-absorbing ideal of S and 0 6= I1I2I3 ⊆ I for
some ideals I1, I2, I3 of S such that I is a free triple zero with respect to I1I2I3.
Let I1I2 * I. We show that I1I3 ⊆ I or I2I3 ⊆ I. By using above remark 1 and
lemma 3.13, it will proceed as the proof of theorem 3.4. If possible, suppose that
I1I3 * I and I2I3 * I. Then there exist a1 ∈ I1 and a2 ∈ I2 such that a1I3 * I
and a2I3 * I. Also, a1a2I3 ⊆ I and a1I3 * I and a2I3 * I, we have a1a2 ∈ I
by lemma 3.13. Since I1I2 * I, therefore for some a ∈ I1, b ∈ I2, ab /∈ I. Since
abI3 ⊆ I and ab /∈ I, we have aI3 ⊆ I or bI3 ⊆ I by lemma 3.13 . Here three cases
arise.

Case I: Suppose that aI3 ⊆ I, but bI3 * I. Since a1bI3 ⊆ I and bI3 * I and
a1I3 * I, by lemma 3.13, we have a1b ∈ I. Since (a + a1)bI3 ⊆ I and aI3 ⊆ I,
but a1I3 * I, therefore (a+ a1)I3 * I. Since bI3 * I and (a+ a1)I3 * I, we have
(a + a1)b ∈ I by lemma 3.13. Again, (a + a1)b = ab + a1b ∈ I and a1b ∈ I, we
conclude that ab ∈ I (since I is subtractive), which is a contradiction.

Case II: Suppose that bI3 ⊆ I, but aI3 * I. Since aa2I3 ⊆ I and aI3 * I and
a2I3 * I, by lemma 3.13, we have aa2 ∈ I. Again, a(b + a2)I3 ⊆ I and bI3 ⊆ I,
but a2I3 * I, we have (b+ a2)I3 * I. Since aI3 * I and (b+ a2)I3 * I, we have
a(b + a2) ∈ I by lemma 3.13. Since a(b + a2) = ab + aa2 ∈ I and aa2 ∈ I, we
conclude that ab ∈ I (since I is subtractive), which is a contradiction.

Case III: Suppose that aI3 ⊆ I and bI3 ⊆ I. Since bI3 ⊆ I and a2I3 * I, we
have (b + a2)I3 * I. Since a1(b + a2)I3 ⊆ I and a1I3 * I and (b + a2)I3 * I, we
have a1(b+a2) = a1b+a1a2 ∈ I by lemma 3.13. Since a1b+a1a2 ∈ I and a1a2 ∈ I,
we have ba1 ∈ I (since I is subtractive). Since aI3 ⊆ I and a1I3 * I, we have
(a+ a1)I3 * I. Since (a+ a1)a2I3 ⊆ I and a2I3 * I and (a+ a1)I3 * I, we have
(a + a1)a2 = aa2 + a1a2 ∈ I by lemma 3.13. Since a1a2 ∈ I and aa2 + a1a2 ∈ I,
we have aa2 ∈ I (since I is subtractive). Now, since (a + a1)(b + a2)I3 ⊆ I and
(a+a1)I3 * I and (b+a2)I3 * I, we have (a+a1)(b+a2) = ab+aa2+ba1+a1a2 ∈ I
by lemma 3.13. Since aa2, ba1, a1a2 ∈ I, we have aa2 + ba1 + a1a2 ∈ I. Since
ab+aa2+ ba1+a1a2 ∈ I and aa2+ ba1+a1a2 ∈ I, we conclude that ab ∈ I (since
I is subtractive), which is a contradiction. Hence I1I3 ⊆ I or I2I3 ⊆ I.

Proposition 3.16. Let S be a semiring and I be a proper subtractive ideal of S.
Then the following statements are equivalent:

(1) For any ideals I1, I2, I3 of S, 0 6= I1I2I3 ⊆ I implies either I1I2 ⊆ I or
I1I3 ⊆ I or I2I3 ⊆ I;

(2) For any ideals I1, I2, I3 of S such that I ⊆ I1, 0 6= I1I2I3 ⊆ I implies either
I1I2 ⊆ I or I1I3 ⊆ I or I2I3 ⊆ I.

Proof. (1)⇒ (2) is clear.
(2) ⇒ (1). Let 0 6= JI2I3 ⊆ I for some ideals J, I2, I3 of S. Then obviously

0 6= (J + I)I2I3 = (JI2I3) + (II2I3) ⊆ I. Let I1 = J + I. Then, either I1I2 ⊆
I or I1I3 ⊆ I or I2I3 ⊆ I by given hypothesis. Therefore, (J + I)I2 ⊆ I or
(J + I)I3 ⊆ I or I2I3 ⊆ I. Thus, either JI2 ⊆ I or JI3 ⊆ I or I2I3 ⊆ I (since I is
subtractive).
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